Abstract:Monitoring bottom-hole variables in petroleum wells is essential for production optimization, safety, and emissions reduction. Permanent Downhole Gauges (PDGs) provide real-time pressure data but face reliability and cost issues. We propose a machine learning-based soft sensor to estimate flowing Bottom-Hole Pressure (BHP) using wellhead and topside measurements. A Long Short-Term Memory (LSTM) model is introduced and compared with Multi-Layer Perceptron (MLP) and Ridge Regression. We also pioneer Transfer Learning for adapting models across operational environments. Tested on real offshore datasets from Brazil's Pre-salt basin, the methodology achieved Mean Absolute Percentage Error (MAPE) consistently below 2\%, outperforming benchmarks. This work offers a cost-effective, accurate alternative to physical sensors, with broad applicability across diverse reservoir and flow conditions.