Abstract:Synthetic molecular communication (SMC) is a key enabler for future healthcare systems in which Internet of Bio-Nano-Things (IoBNT) devices facilitate the continuous monitoring of a patient's biochemical signals. To close the loop between sensing and actuation, both the detection and the generation of in-body molecular communication (MC) signals is key. However, generating signals inside the human body, e.g., via synthetic nanodevices, poses a challenge in SMC, due to technological obstacles as well as legal, safety, and ethical issues. Hence, this paper considers an SMC system in which signals are generated indirectly via the modulation of a natural in-body MC system, namely the gut-brain axis (GBA). Therapeutic GBA modulation is already established as treatment for neurological diseases, e.g., drug refractory epilepsy (DRE), and performed via the administration of nutritional supplements or specific diets. However, the molecular signaling pathways that mediate the effect of such treatments are mostly unknown. Consequently, existing treatments are standardized or designed heuristically and able to help only some patients while failing to help others. In this paper, we propose to leverage personal health data, e.g., gathered by in-body IoBNT devices, to design more versatile and robust GBA modulation-based treatments as compared to the existing ones. To show the feasibility of our approach, we define a catalog of theoretical requirements for therapeutic GBA modulation. Then, we propose a machine learning model to verify these requirements for practical scenarios when only limited data on the GBA modulation exists. By evaluating the proposed model on several datasets, we confirm its excellent accuracy in identifying different modulators of the GBA. Finally, we utilize the proposed model to identify specific modulatory pathways that play an important role for therapeutic GBA modulation.
Abstract:The notion of synthetic molecular communication (MC) refers to the transmission of information via molecules and is largely foreseen for use within the human body, where traditional electromagnetic wave (EM)-based communication is impractical. MC is anticipated to enable innovative medical applications, such as early-stage tumor detection, targeted drug delivery, and holistic approaches like the Internet of Bio-Nano Things (IoBNT). Many of these applications involve parts of the human cardiovascular system (CVS), here referred to as networks, posing challenges for MC due to their complex, highly branched vessel structures. To gain a better understanding of how the topology of such branched vessel networks affects the reception of a molecular signal at a target location, e.g., the network outlet, we present a generic analytical end-to-end model that characterizes molecule propagation and reception in linear branched vessel networks (LBVNs). We specialize this generic model to any MC system employing superparamagnetic iron-oxide nanoparticles (SPIONs) as signaling molecules and a planar coil as receiver (RX). By considering components that have been previously established in testbeds, we effectively isolate the impact of the network topology and validate our theoretical model with testbed data. Additionally, we propose two metrics, namely the molecule delay and the multi-path spread, that relate the LBVN topology to the molecule dispersion induced by the network, thereby linking the network structure to the signal-to-noise ratio (SNR) at the target location. This allows the characterization of the SNR at any point in the network solely based on the network topology. Consequently, our framework can, e.g., be exploited for optimal sensor placement in the CVS or identification of suitable testbed topologies for given SNR requirements.
Abstract:Controlled drug delivery (CDD), the controlled release and delivery of therapeutic drugs inside the human body, is a promising approach to increase the efficacy of drug administration and reduce harmful side effects to the body. CDD has been a major research focus in the field of molecular communications (MC) with the goal to aid the design and optimization of CDD systems with communication theoretical analysis. However, the existing studies of CDD under the MC framework are purely theoretical, and the potential of MC for the development of practical CDD applications remains yet to be shown. This paper presents a step towards filling this research gap. Specifically, we present a novel MC-based model for a specific CDD system in which drugs are embedded into microparticles and released gradually towards the target site. It is demonstrated that the proposed model is able to faithfully reproduce experimental data. Furthermore, statistical analysis is conducted to explore the impact of the microparticle size on the drug release. The presented results reveal the sensitivity of the drug release to changes in the microparticle size. In this way, the proposed model can be used for the design of future microparticle-based CDD systems.