Abstract:Accurately modeling and inferring solutions to time-dependent partial differential equations (PDEs) over extended horizons remains a core challenge in scientific machine learning. Traditional full rollout (FR) methods, which predict entire trajectories in one pass, often fail to capture the causal dependencies and generalize poorly outside the training time horizon. Autoregressive (AR) approaches, evolving the system step by step, suffer from error accumulation, limiting long-term accuracy. These shortcomings limit the long-term accuracy and reliability of both strategies. To address these issues, we introduce the Physics-Informed Time-Integrated Deep Operator Network (PITI-DeepONet), a dual-output architecture trained via fully physics-informed or hybrid physics- and data-driven objectives to ensure stable, accurate long-term evolution well beyond the training horizon. Instead of forecasting future states, the network learns the time-derivative operator from the current state, integrating it using classical time-stepping schemes to advance the solution in time. Additionally, the framework can leverage residual monitoring during inference to estimate prediction quality and detect when the system transitions outside the training domain. Applied to benchmark problems, PITI-DeepONet shows improved accuracy over extended inference time horizons when compared to traditional methods. Mean relative $\mathcal{L}_2$ errors reduced by 84% (vs. FR) and 79% (vs. AR) for the one-dimensional heat equation; by 87% (vs. FR) and 98% (vs. AR) for the one-dimensional Burgers equation; and by 42% (vs. FR) and 89% (vs. AR) for the two-dimensional Allen-Cahn equation. By moving beyond classic FR and AR schemes, PITI-DeepONet paves the way for more reliable, long-term integration of complex, time-dependent PDEs.
Abstract:The deep operator network (DeepONet) is a popular neural operator architecture that has shown promise in solving partial differential equations (PDEs) by using deep neural networks to map between infinite-dimensional function spaces. In the absence of labeled datasets, we utilize the PDE residual loss to learn the physical system, an approach known as physics-informed DeepONet. This method faces significant computational challenges, primarily due to the curse of dimensionality, as the computational cost increases exponentially with finer discretization. In this paper, we introduce the Separable DeepONet framework to address these challenges and improve scalability for high-dimensional PDEs. Our approach involves a factorization technique where sub-networks handle individual one-dimensional coordinates, thereby reducing the number of forward passes and the size of the Jacobian matrix. By using forward-mode automatic differentiation, we further optimize the computational cost related to the Jacobian matrix. As a result, our modifications lead to a linear scaling of computational cost with discretization density, making Separable DeepONet suitable for high-dimensional PDEs. We validate the effectiveness of the separable architecture through three benchmark PDE models: the viscous Burgers equation, Biot's consolidation theory, and a parametrized heat equation. In all cases, our proposed framework achieves comparable or improved accuracy while significantly reducing computational time compared to conventional DeepONet. These results demonstrate the potential of Separable DeepONet in efficiently solving complex, high-dimensional PDEs, advancing the field of physics-informed machine learning.