Abstract:Cognitive processes are realized across an extraordinary range of natural, artificial, and hybrid systems, yet there is no unified framework for comparing their forms, limits, and unrealized possibilities. Here, we propose a cognition space approach that replaces narrow, substrate-dependent definitions with a comparative representation based on organizational and informational dimensions. Within this framework, cognition is treated as a graded capacity to sense, process, and act upon information, allowing systems as diverse as cells, brains, artificial agents, and human-AI collectives to be analyzed within a common conceptual landscape. We introduce and examine three cognition spaces -- basal aneural, neural, and human-AI hybrid -- and show that their occupation is highly uneven, with clusters of realized systems separated by large unoccupied regions. We argue that these voids are not accidental but reflect evolutionary contingencies, physical constraints, and design limitations. By focusing on the structure of cognition spaces rather than on categorical definitions, this approach clarifies the diversity of existing cognitive systems and highlights hybrid cognition as a promising frontier for exploring novel forms of complexity beyond those produced by biological evolution.
Abstract:Syntax connects words to each other in very specific ways. Two words are syntactically connected if they depend directly on each other. Syntactic connections usually happen within a sentence. Gathering all those connection across several sentences gives birth to syntax networks. Earlier studies in the field have analysed the structure and properties of syntax networks trying to find clusters/phylogenies of languages that share similar network features. The results obtained in those studies will be put to test in this thesis by increasing both the number of languages and the number of properties considered in the analysis. Besides that, language networks of particular languages will be inspected in depth by means of a novel network analysis [25]. Words (nodes of the network) will be clustered into topological communities whose members share similar features. The properties of each of these communities will be thoroughly studied along with the Part of Speech (grammatical class) of each word. Results across different languages will also be compared in an attempt to discover universally preserved structural patterns across syntax networks.