Abstract:Self-supervised monocular depth estimation has achieved notable success under daytime conditions. However, its performance deteriorates markedly at night due to low visibility and varying illumination, e.g., insufficient light causes textureless areas, and moving objects bring blurry regions. To this end, we propose a self-supervised framework named DASP that leverages spatiotemporal priors for nighttime depth estimation. Specifically, DASP consists of an adversarial branch for extracting spatiotemporal priors and a self-supervised branch for learning. In the adversarial branch, we first design an adversarial network where the discriminator is composed of four devised spatiotemporal priors learning blocks (SPLB) to exploit the daytime priors. In particular, the SPLB contains a spatial-based temporal learning module (STLM) that uses orthogonal differencing to extract motion-related variations along the time axis and an axial spatial learning module (ASLM) that adopts local asymmetric convolutions with global axial attention to capture the multiscale structural information. By combining STLM and ASLM, our model can acquire sufficient spatiotemporal features to restore textureless areas and estimate the blurry regions caused by dynamic objects. In the self-supervised branch, we propose a 3D consistency projection loss to bilaterally project the target frame and source frame into a shared 3D space, and calculate the 3D discrepancy between the two projected frames as a loss to optimize the 3D structural consistency and daytime priors. Extensive experiments on the Oxford RobotCar and nuScenes datasets demonstrate that our approach achieves state-of-the-art performance for nighttime depth estimation. Ablation studies further validate the effectiveness of each component.
Abstract:Due to the visual properties of reflection and refraction, RGB-D cameras cannot accurately capture the depth of transparent objects, leading to incomplete depth maps. To fill in the missing points, recent studies tend to explore new visual features and design complex networks to reconstruct the depth, however, these approaches tremendously increase computation, and the correlation of different visual features remains a problem. To this end, we propose an efficient depth completion network named DistillGrasp which distillates knowledge from the teacher branch to the student branch. Specifically, in the teacher branch, we design a position correlation block (PCB) that leverages RGB images as the query and key to search for the corresponding values, guiding the model to establish correct correspondence between two features and transfer it to the transparent areas. For the student branch, we propose a consistent feature correlation module (CFCM) that retains the reliable regions of RGB images and depth maps respectively according to the consistency and adopts a CNN to capture the pairwise relationship for depth completion. To avoid the student branch only learning regional features from the teacher branch, we devise a distillation loss that not only considers the distance loss but also the object structure and edge information. Extensive experiments conducted on the ClearGrasp dataset manifest that our teacher network outperforms state-of-the-art methods in terms of accuracy and generalization, and the student network achieves competitive results with a higher speed of 48 FPS. In addition, the significant improvement in a real-world robotic grasping system illustrates the effectiveness and robustness of our proposed system.