Abstract:Large AI models have been widely adopted in wireless communications for channel modeling, beamforming, and resource optimization. However, most existing efforts remain limited to single-modality inputs and channel-specific objec- tives, overlooking the broader potential of large foundation models for unified wireless sensing. To bridge this gap, we propose MMSense, a multi-modal, multi-task foundation model that jointly addresses channel-centric, environment-aware, and human-centered sensing. Our framework integrates image, radar, LiDAR, and textual data by transforming them into vision- compatible representations, enabling effective cross-modal align- ment within a unified feature space. A modality gating mecha- nism adaptively fuses these representations, while a vision-based large language model backbone enables unified feature align- ment and instruction-driven task adaptation. Furthermore, task- specific sequential attention and uncertainty-based loss weighting mechanisms enhance cross-task generalization. Experiments on real wireless scenario datasets show that our approach outper- forms both task-specific and large-model baselines, confirming its strong generalization across heterogeneous sensing tasks.




Abstract:Research on the sixth generation cellular networks (6G) is gaining huge momentum to achieve ubiquitous wireless connectivity. Connected autonomous driving (CAV) is a critical vertical envisioned for 6G, holding great potentials of improving road safety, road and energy efficiency. However the stringent service requirements of CAV applications on reliability, latency and high speed communications will present big challenges to 6G networks. New channel access algorithms and intelligent control schemes for connected vehicles are needed for 6G supported CAV. In this paper, we investigated 6G supported cooperative driving, which is an advanced driving mode through information sharing and driving coordination. Firstly we quantify the delay upper bounds of 6G vehicle to vehicle (V2V) communications with hybrid communication and channel access technologies. A deep learning neural network is developed and trained for fast computation of the delay bounds in real time operations. Then, an intelligent strategy is designed to control the inter-vehicle distance for cooperative autonomous driving. Furthermore, we propose a Markov Chain based algorithm to predict the parameters of the system states, and also a safe distance mapping method to enable smooth vehicular speed changes. The proposed algorithms are implemented in the AirSim autonomous driving platform. Simulation results show that the proposed algorithms are effective and robust with safe and stable cooperative autonomous driving, which greatly improve the road safety, capacity and efficiency.