Abstract:Multiple solutions mainly originate from the existence of redundant degrees of freedom in the robot arm, which may cause difficulties in inverse model learning but they can also bring many benefits, such as higher flexibility and robustness. Current multi-solution inverse model learning methods rely on conditional deep generative models, yet they often fail to achieve sufficient precision when learning multiple solutions. In this paper, we propose Conditional Embodied Self-Supervised Learning (CEMSSL) for robot arm multi-solution inverse model learning, and present a unified framework for high-precision multi-solution inverse model learning that is applicable to other conditional deep generative models. Our experimental results demonstrate that our framework can achieve a significant improvement in precision (up to 2 orders of magnitude) while preserving the properties of the original method. The related code will be available soon.
Abstract:Forward and inverse kinematics models are fundamental to robot arms, serving as the basis for the robot arm's operational tasks. However, in model learning of robot arms, especially in the presence of redundant degrees of freedom, inverse model learning is more challenging than forward model learning due to the non-convex problem caused by multiple solutions. In this paper, we propose a framework for autonomous learning of the robot arm inverse model based on embodied self-supervised learning (EMSSL) with sampling and training coordination. We investigate batch inference and parallel computation strategies for data sampling in order to accelerate model learning and propose two approaches for fast adaptation of the robot arm model. A series of experiments demonstrate the effectiveness of the method we proposed. The related code will be available soon.
Abstract:Precision is a crucial performance indicator for robot arms, as high precision manipulation allows for a wider range of applications. Traditional methods for improving robot arm precision rely on error compensation. However, these methods are often not robust and lack adaptability. Learning-based methods offer greater flexibility and adaptability, while current researches show that they often fall short in achieving high precision and struggle to handle many scenarios requiring high precision. In this paper, we propose a novel high-precision robot arm manipulation framework based on online iterative learning and forward simulation, which can achieve positioning error (precision) less than end-effector physical minimum displacement. Additionally, we parallelize multiple high-precision manipulation strategies to better combine online iterative learning and forward simulation. Furthermore, we consider the joint angular resolution of the real robot arm, which is usually neglected in related works. A series of experiments on both simulation and real UR3 robot arm platforms demonstrate that our proposed method is effective and promising. The related code will be available soon.