Abstract:Reactive controllers for autonomous racing avoid the computational overhead of full ee-Think-Act autonomy stacks by directly mapping sensor input to control actions, eliminating the need for localization and planning. A widely used reactive strategy is FTG, which identifies gaps in LiDAR range measurements and steers toward a chosen one. While effective on fully bounded circuits, FTG fails in scenarios with incomplete boundaries and is prone to driving into dead-ends, known as FTG-traps. This work presents DTR, a reactive controller that combines Delaunay triangulation, from raw LiDAR readings, with track boundary segmentation to extract a centerline while systematically avoiding FTG-traps. Compared to FTG, the proposed method achieves lap times that are 70\% faster and approaches the performance of map-dependent methods. With a latency of 8.95 ms and CPU usage of only 38.85\% on the robot's OBC, DTR is real-time capable and has been successfully deployed and evaluated in field experiments.
Abstract:Accurate velocity estimation is critical in mobile robotics, particularly for driver assistance systems and autonomous driving. Wheel odometry fused with Inertial Measurement Unit (IMU) data is a widely used method for velocity estimation; however, it typically requires strong assumptions, such as non-slip steering, or complex vehicle dynamics models that do not hold under varying environmental conditions like slippery surfaces. We introduce an approach to velocity estimation that is decoupled from wheel-to-surface traction assumptions by leveraging planar kinematics in combination with optical flow from event cameras pointed perpendicularly at the ground. The asynchronous micro-second latency and high dynamic range of event cameras make them highly robust to motion blur, a common challenge in vision-based perception techniques for autonomous driving. The proposed method is evaluated through in-field experiments on a 1:10 scale autonomous racing platform and compared to precise motion capture data, demonstrating not only performance on par with the state-of-the-art Event-VIO method but also a 38.3 % improvement in lateral error. Qualitative experiments at highway speeds of up to 32 m/s further confirm the effectiveness of our approach, indicating significant potential for real-world deployment.
Abstract:Future robotic systems operating in real-world environments will require on-board embodied intelligence without continuous cloud connection, balancing capabilities with constraints on computational power and memory. This work presents an extension of the R1-zero approach, which enables the usage of low parameter-count Large Language Models (LLMs) in the robotic domain. The R1-Zero approach was originally developed to enable mathematical reasoning in LLMs using static datasets. We extend it to the robotics domain through integration in a closed-loop Reinforcement Learning (RL) framework. This extension enhances reasoning in Embodied Artificial Intelligence (Embodied AI) settings without relying solely on distillation of large models through Supervised Fine-Tuning (SFT). We show that small-scale LLMs can achieve effective reasoning performance by learning through closed-loop interaction with their environment, which enables tasks that previously required significantly larger models. In an autonomous driving setting, a performance gain of 20.2%-points over the SFT-based baseline is observed with a Qwen2.5-1.5B model. Using the proposed training procedure, Qwen2.5-3B achieves a 63.3% control adaptability score, surpassing the 58.5% obtained by the much larger, cloud-bound GPT-4o. These results highlight that practical, on-board deployment of small LLMs is not only feasible but can outperform larger models if trained through environmental feedback, underscoring the importance of an interactive learning framework for robotic Embodied AI, one grounded in practical experience rather than static supervision.
Abstract:Advances in lightweight neural networks have revolutionized computer vision in a broad range of IoT applications, encompassing remote monitoring and process automation. However, the detection of small objects, which is crucial for many of these applications, remains an underexplored area in current computer vision research, particularly for low-power embedded devices that host resource-constrained processors. To address said gap, this paper proposes an adaptive tiling method for lightweight and energy-efficient object detection networks, including YOLO-based models and the popular FOMO network. The proposed tiling enables object detection on low-power MCUs with no compromise on accuracy compared to large-scale detection models. The benefit of the proposed method is demonstrated by applying it to FOMO and TinyissimoYOLO networks on a novel RISC-V-based MCU with built-in ML accelerators. Extensive experimental results show that the proposed tiling method boosts the F1-score by up to 225% for both FOMO and TinyissimoYOLO networks while reducing the average object count error by up to 76% with FOMO and up to 89% for TinyissimoYOLO. Furthermore, the findings of this work indicate that using a soft F1 loss over the popular binary cross-entropy loss can serve as an implicit non-maximum suppression for the FOMO network. To evaluate the real-world performance, the networks are deployed on the RISC-V based GAP9 microcontroller from GreenWaves Technologies, showcasing the proposed method's ability to strike a balance between detection performance ($58% - 95%$ F1 score), low latency (0.6 ms/Inference - 16.2 ms/Inference}), and energy efficiency (31 uJ/Inference} - 1.27 mJ/Inference) while performing multiple predictions using high-resolution images on a MCU.
Abstract:Advances in lightweight neural networks have revolutionized computer vision in a broad range of IoT applications, encompassing remote monitoring and process automation. However, the detection of small objects, which is crucial for many of these applications, remains an underexplored area in current computer vision research, particularly for embedded devices. To address this gap, the paper proposes a novel adaptive tiling method that can be used on top of any existing object detector including the popular FOMO network for object detection on microcontrollers. Our experimental results show that the proposed tiling method can boost the F1-score by up to 225% while reducing the average object count error by up to 76%. Furthermore, the findings of this work suggest that using a soft F1 loss over the popular binary cross-entropy loss can significantly reduce the negative impact of imbalanced data. Finally, we validate our approach by conducting experiments on the Sony Spresense microcontroller, showcasing the proposed method's ability to strike a balance between detection performance, low latency, and minimal memory consumption.