Abstract:The rapid growth of 3D digital content necessitates expandable recognition systems for open-world scenarios. However, existing 3D class-incremental learning methods struggle under extreme data scarcity due to geometric misalignment and texture bias. While recent approaches integrate 3D data with 2D foundation models (e.g., CLIP), they suffer from semantic blurring caused by texture-biased projections and indiscriminate fusion of geometric-textural cues, leading to unstable decision prototypes and catastrophic forgetting. To address these issues, we propose Cross-Modal Geometric Rectification (CMGR), a framework that enhances 3D geometric fidelity by leveraging CLIP's hierarchical spatial semantics. Specifically, we introduce a Structure-Aware Geometric Rectification module that hierarchically aligns 3D part structures with CLIP's intermediate spatial priors through attention-driven geometric fusion. Additionally, a Texture Amplification Module synthesizes minimal yet discriminative textures to suppress noise and reinforce cross-modal consistency. To further stabilize incremental prototypes, we employ a Base-Novel Discriminator that isolates geometric variations. Extensive experiments demonstrate that our method significantly improves 3D few-shot class-incremental learning, achieving superior geometric coherence and robustness to texture bias across cross-domain and within-domain settings.




Abstract:Purpose: To assess the alignment of GPT-4-based evaluation to human clinician experts, for the evaluation of responses to ophthalmology-related patient queries generated by fine-tuned LLM chatbots. Methods: 400 ophthalmology questions and paired answers were created by ophthalmologists to represent commonly asked patient questions, divided into fine-tuning (368; 92%), and testing (40; 8%). We find-tuned 5 different LLMs, including LLAMA2-7b, LLAMA2-7b-Chat, LLAMA2-13b, and LLAMA2-13b-Chat. For the testing dataset, additional 8 glaucoma QnA pairs were included. 200 responses to the testing dataset were generated by 5 fine-tuned LLMs for evaluation. A customized clinical evaluation rubric was used to guide GPT-4 evaluation, grounded on clinical accuracy, relevance, patient safety, and ease of understanding. GPT-4 evaluation was then compared against ranking by 5 clinicians for clinical alignment. Results: Among all fine-tuned LLMs, GPT-3.5 scored the highest (87.1%), followed by LLAMA2-13b (80.9%), LLAMA2-13b-chat (75.5%), LLAMA2-7b-Chat (70%) and LLAMA2-7b (68.8%) based on the GPT-4 evaluation. GPT-4 evaluation demonstrated significant agreement with human clinician rankings, with Spearman and Kendall Tau correlation coefficients of 0.90 and 0.80 respectively; while correlation based on Cohen Kappa was more modest at 0.50. Notably, qualitative analysis and the glaucoma sub-analysis revealed clinical inaccuracies in the LLM-generated responses, which were appropriately identified by the GPT-4 evaluation. Conclusion: The notable clinical alignment of GPT-4 evaluation highlighted its potential to streamline the clinical evaluation of LLM chatbot responses to healthcare-related queries. By complementing the existing clinician-dependent manual grading, this efficient and automated evaluation could assist the validation of future developments in LLM applications for healthcare.