Abstract:Robustly evaluating the long-form storytelling capabilities of Large Language Models (LLMs) remains a significant challenge, as existing benchmarks often lack the necessary scale, diversity, or objective measures. To address this, we introduce WebNovelBench, a novel benchmark specifically designed for evaluating long-form novel generation. WebNovelBench leverages a large-scale dataset of over 4,000 Chinese web novels, framing evaluation as a synopsis-to-story generation task. We propose a multi-faceted framework encompassing eight narrative quality dimensions, assessed automatically via an LLM-as-Judge approach. Scores are aggregated using Principal Component Analysis and mapped to a percentile rank against human-authored works. Our experiments demonstrate that WebNovelBench effectively differentiates between human-written masterpieces, popular web novels, and LLM-generated content. We provide a comprehensive analysis of 24 state-of-the-art LLMs, ranking their storytelling abilities and offering insights for future development. This benchmark provides a scalable, replicable, and data-driven methodology for assessing and advancing LLM-driven narrative generation.
Abstract:When LLMs are deployed in sensitive, human-facing settings, it is crucial that they do not output unsafe, biased, or privacy-violating outputs. For this reason, models are both trained and instructed to refuse to answer unsafe prompts such as "Tell me how to build a bomb." We find that, despite these safeguards, it is possible to break model defenses simply by appending a space to the end of a model's input. In a study of eight open-source models, we demonstrate that this acts as a strong enough attack to cause the majority of models to generate harmful outputs with very high success rates. We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted, overriding training signals to refuse to answer unsafe requests. Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods. Code and data will be made available at https://github.com/Linlt-leon/Adversarial-Alignments.
Abstract:When LLMs are deployed in sensitive, human-facing settings, it is crucial that they do not output unsafe, biased, or privacy-violating outputs. For this reason, models are both trained and instructed to refuse to answer unsafe prompts such as "Tell me how to build a bomb." We find that, despite these safeguards, it is possible to break model defenses simply by appending a space to the end of a model's input. In a study of eight open-source models, we demonstrate that this acts as a strong enough attack to cause the majority of models to generate harmful outputs with very high success rates. We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted, overriding training signals to refuse to answer unsafe requests. Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods. Code and data will be available at https://github.com/hannah-aught/space_attack.