Abstract:As the successor to the Segment Anything Model (SAM), the Segment Anything Model 2 (SAM2) not only improves performance in image segmentation but also extends its capabilities to video segmentation. However, its effectiveness in segmenting rare objects that seldom appear in videos remains underexplored. In this study, we evaluate SAM2 on three distinct video segmentation tasks: Video Shadow Detection (VSD) and Video Mirror Detection (VMD). Specifically, we use ground truth point or mask prompts to initialize the first frame and then predict corresponding masks for subsequent frames. Experimental results show that SAM2's performance on these tasks is suboptimal, especially when point prompts are used, both quantitatively and qualitatively. Code is available at \url{https://github.com/LeipingJie/SAM2Video}
Abstract:Segment anything model (SAM) has shown its spectacular performance in segmenting universal objects, especially when elaborate prompts are provided. However, the drawback of SAM is twofold. On the first hand, it fails to segment specific targets, e.g., shadow images or lesions in medical images. On the other hand, manually specifying prompts is extremely time-consuming. To overcome the problems, we propose AdapterShadow, which adapts SAM model for shadow detection. To adapt SAM for shadow images, trainable adapters are inserted into the frozen image encoder of SAM, since the training of the full SAM model is both time and memory consuming. Moreover, we introduce a novel grid sampling method to generate dense point prompts, which helps to automatically segment shadows without any manual interventions. Extensive experiments are conducted on four widely used benchmark datasets to demonstrate the superior performance of our proposed method. Codes will are publicly available at https://github.com/LeipingJie/AdapterShadow.
Abstract:As a promptable generic object segmentation model, segment anything model (SAM) has recently attracted significant attention, and also demonstrates its powerful performance. Nevertheless, it still meets its Waterloo when encountering several tasks, e.g., medical image segmentation, camouflaged object detection, etc. In this report, we try SAM on an unexplored popular task: shadow detection. Specifically, four benchmarks were chosen and evaluated with widely used metrics. The experimental results show that the performance for shadow detection using SAM is not satisfactory, especially when comparing with the elaborate models. Code is available at https://github.com/LeipingJie/SAMSh.