Abstract:This correspondence presents a power-aware cognitive radar framework for joint detection and tracking of multiple targets in a massive multiple-input multiple-output (MIMO) radar environment. Building on a previous single-target algorithm based on Partially Observable Monte Carlo Planning (POMCP), we extend it to the multi-target case by assigning each target an independent POMCP tree, enabling scalable and efficient planning. Departing from uniform power allocation-which is often suboptimal with varying signal-to-noise ratios (SNRs)-our approach predicts each target's future angular position and expected received power, based on its estimated range and radar cross-section (RCS). These predictions guide adaptive waveform design via a constrained optimization problem that allocates transmit energy to enhance the detectability of weaker or distant targets, while ensuring sufficient power for high-SNR targets. The reward function in the underlying partially observable Markov decision process (POMDP) is also modified to prioritize accurate spatial and power estimation. Simulations involving multiple targets with different SNRs confirm the effectiveness of our method. The proposed framework for the cognitive radar improves detection probability for low-SNR targets and achieves more accurate tracking compared to approaches using uniform or orthogonal waveforms. These results demonstrate the potential of the POMCP-based framework for adaptive, efficient multi-target radar systems.
Abstract:The joint detection and tracking of a moving target embedded in an unknown disturbance represents a key feature that motivates the development of the cognitive radar paradigm. Building upon recent advancements in robust target detection with multiple-input multiple-output (MIMO) radars, this work explores the application of a Partially Observable Markov Decision Process (POMDP) framework to enhance the tracking and detection tasks in a statistically unknown environment. In the POMDP setup, the radar system is considered as an intelligent agent that continuously senses the surrounding environment, optimizing its actions to maximize the probability of detection $(P_D)$ and improve the target position and velocity estimation, all this while keeping a constant probability of false alarm $(P_{FA})$. The proposed approach employs an online algorithm that does not require any apriori knowledge of the noise statistics, and it relies on a much more general observation model than the traditional range-azimuth-elevation model employed by conventional tracking algorithms. Simulation results clearly show substantial performance improvement of the POMDP-based algorithm compared to the State-Action-Reward-State-Action (SARSA)-based one that has been recently investigated in the context of massive MIMO (MMIMO) radar systems.