This correspondence presents a power-aware cognitive radar framework for joint detection and tracking of multiple targets in a massive multiple-input multiple-output (MIMO) radar environment. Building on a previous single-target algorithm based on Partially Observable Monte Carlo Planning (POMCP), we extend it to the multi-target case by assigning each target an independent POMCP tree, enabling scalable and efficient planning. Departing from uniform power allocation-which is often suboptimal with varying signal-to-noise ratios (SNRs)-our approach predicts each target's future angular position and expected received power, based on its estimated range and radar cross-section (RCS). These predictions guide adaptive waveform design via a constrained optimization problem that allocates transmit energy to enhance the detectability of weaker or distant targets, while ensuring sufficient power for high-SNR targets. The reward function in the underlying partially observable Markov decision process (POMDP) is also modified to prioritize accurate spatial and power estimation. Simulations involving multiple targets with different SNRs confirm the effectiveness of our method. The proposed framework for the cognitive radar improves detection probability for low-SNR targets and achieves more accurate tracking compared to approaches using uniform or orthogonal waveforms. These results demonstrate the potential of the POMCP-based framework for adaptive, efficient multi-target radar systems.