Abstract:Counting the number of items in a visual scene remains a fundamental yet challenging task in computer vision. Traditional approaches to solving this problem rely on domain-specific counting architectures, which are trained using datasets annotated with a predefined set of object categories. However, recent progress in creating large-scale multimodal vision-language models (VLMs) suggests that these domain-general architectures may offer a flexible alternative for open-set object counting. In this study, we therefore systematically compare the performance of state-of-the-art specialized counting architectures against VLMs on two popular counting datasets, as well as on a novel benchmark specifically created to have a finer-grained control over the visual properties of test images. Our findings show that most VLMs can approximately enumerate the number of items in a visual scene, matching or even surpassing the performance of specialized computer vision architectures. Notably, enumeration accuracy significantly improves when VLMs are prompted to generate intermediate representations (i.e., locations and verbal labels) of each object to be counted. Nevertheless, none of the models can reliably count the number of objects in complex visual scenes, showing that further research is still needed to create AI systems that can reliably deploy counting procedures in realistic environments.




Abstract:Humans share with many animal species the ability to perceive and approximately represent the number of objects in visual scenes. This ability improves throughout childhood, suggesting that learning and development play a key role in shaping our number sense. This hypothesis is further supported by computational investigations based on deep learning, which have shown that numerosity perception can spontaneously emerge in neural networks that learn the statistical structure of images with a varying number of items. However, neural network models are usually trained using synthetic datasets that might not faithfully reflect the statistical structure of natural environments. In this work, we exploit recent advances in computer vision algorithms to design and implement an original pipeline that can be used to estimate the distribution of numerosity and non-numerical magnitudes in large-scale datasets containing thousands of real images depicting objects in daily life situations. We show that in natural visual scenes the frequency of appearance of different numerosities follows a power law distribution and that numerosity is strongly correlated with many continuous magnitudes, such as cumulative areas and convex hull, which might explain why numerosity judgements are often influenced by these non-numerical cues.