Abstract:Natural medicines, particularly Traditional Chinese Medicine (TCM), are gaining global recognition for their therapeutic potential in addressing human symptoms and diseases. TCM, with its systematic theories and extensive practical experience, provides abundant resources for healthcare. However, the effective application of TCM requires precise syndrome diagnosis, determination of treatment principles, and prescription formulation, which demand decades of clinical expertise. Despite advancements in TCM-based decision systems, machine learning, and deep learning research, limitations in data and single-objective constraints hinder their practical application. In recent years, large language models (LLMs) have demonstrated potential in complex tasks, but lack specialization in TCM and face significant challenges, such as too big model scale to deploy and issues with hallucination. To address these challenges, we introduce Tianyi with 7.6-billion-parameter LLM, a model scale proper and specifically designed for TCM, pre-trained and fine-tuned on diverse TCM corpora, including classical texts, expert treatises, clinical records, and knowledge graphs. Tianyi is designed to assimilate interconnected and systematic TCM knowledge through a progressive learning manner. Additionally, we establish TCMEval, a comprehensive evaluation benchmark, to assess LLMs in TCM examinations, clinical tasks, domain-specific question-answering, and real-world trials. The extensive evaluations demonstrate the significant potential of Tianyi as an AI assistant in TCM clinical practice and research, bridging the gap between TCM knowledge and practical application.
Abstract:To mitigate the susceptibility of neural networks to adversarial attacks, adversarial training has emerged as a prevalent and effective defense strategy. Intrinsically, this countermeasure incurs a trade-off, as it sacrifices the model's accuracy in processing normal samples. To reconcile the trade-off, we pioneer the incorporation of null-space projection into adversarial training and propose two innovative Null-space Projection based Adversarial Training(NPAT) algorithms tackling sample generation and gradient optimization, named Null-space Projected Data Augmentation (NPDA) and Null-space Projected Gradient Descent (NPGD), to search for an overarching optimal solutions, which enhance robustness with almost zero deterioration in generalization performance. Adversarial samples and perturbations are constrained within the null-space of the decision boundary utilizing a closed-form null-space projector, effectively mitigating threat of attack stemming from unreliable features. Subsequently, we conducted experiments on the CIFAR10 and SVHN datasets and reveal that our methodology can seamlessly combine with adversarial training methods and obtain comparable robustness while keeping generalization close to a high-accuracy model.