Abstract:Software engineers in various industrial domains are already using Large Language Models (LLMs) to accelerate the process of implementing parts of software systems. When considering its potential use for ADAS or AD systems in the automotive context, there is a need to systematically assess this new setup: LLMs entail a well-documented set of risks for safety-related systems' development due to their stochastic nature. To reduce the effort for code reviewers to evaluate LLM-generated code, we propose an evaluation pipeline to conduct sanity-checks on the generated code. We compare the performance of six state-of-the-art LLMs (CodeLlama, CodeGemma, DeepSeek-r1, DeepSeek-Coders, Mistral, and GPT-4) on four safety-related programming tasks. Additionally, we qualitatively analyse the most frequent faults generated by these LLMs, creating a failure-mode catalogue to support human reviewers. Finally, the limitations and capabilities of LLMs in code generation, and the use of the proposed pipeline in the existing process, are discussed.
Abstract:Multi-agent autonomous systems (MAS) are better at addressing challenges that spans across multiple domains than singular autonomous agents. This holds true within the field of software engineering (SE) as well. The state-of-the-art research on MAS within SE focuses on integrating LLMs at the core of autonomous agents to create LLM-based multi-agent autonomous (LMA) systems. However, the introduction of LMA systems into SE brings a plethora of challenges. One of the major challenges is the strategic allocation of tasks between humans and the LMA system in a trustworthy manner. To address this challenge, a RACI-based framework is proposed in this work in progress article, along with implementation guidelines and an example implementation of the framework. The proposed framework can facilitate efficient collaboration, ensure accountability, and mitigate potential risks associated with LLM-driven automation while aligning with the Trustworthy AI guidelines. The future steps for this work delineating the planned empirical validation method are also presented.
Abstract:Recent Generative Artificial Intelligence (GenAI) trends focus on various applications, including creating stories, illustrations, poems, articles, computer code, music compositions, and videos. Extrinsic hallucinations are a critical limitation of such GenAI, which can lead to significant challenges in achieving and maintaining the trustworthiness of GenAI. In this paper, we propose two new concepts that we believe will aid the research community in addressing limitations associated with the application of GenAI models. First, we propose a definition for the "desirability" of GenAI outputs and three factors which are observed to influence it. Second, drawing inspiration from Martin Fowler's code smells, we propose the concept of "prompt smells" and the adverse effects they are observed to have on the desirability of GenAI outputs. We expect our work will contribute to the ongoing conversation about the desirability of GenAI outputs and help advance the field in a meaningful way.
Abstract:Complying with the EU AI Act (AIA) guidelines while developing and implementing AI systems will soon be mandatory within the EU. However, practitioners lack actionable instructions to operationalise ethics during AI systems development. A literature review of different ethical guidelines revealed inconsistencies in the principles addressed and the terminology used to describe them. Furthermore, requirements engineering (RE), which is identified to foster trustworthiness in the AI development process from the early stages was observed to be absent in a lot of frameworks that support the development of ethical and trustworthy AI. This incongruous phrasing combined with a lack of concrete development practices makes trustworthy AI development harder. To address this concern, we formulated a comparison table for the terminology used and the coverage of the ethical AI principles in major ethical AI guidelines. We then examined the applicability of ethical AI development frameworks for performing effective RE during the development of trustworthy AI systems. A tertiary review and meta-analysis of literature discussing ethical AI frameworks revealed their limitations when developing trustworthy AI. Based on our findings, we propose recommendations to address such limitations during the development of trustworthy AI.