Abstract:Generative modeling of natural images has been extensively studied in recent years, yielding remarkable progress. Current state-of-the-art methods are either based on maximum likelihood estimation or adversarial training. Both methods have their own drawbacks, which are complementary in nature. The first leads to over-generalization as the maximum likelihood criterion encourages models to cover the support of the training data by heavily penalizing small masses assigned to training data. Simplifying assumptions in such models limits their capacity and makes them spill mass on unrealistic samples. The second leads to mode-dropping since adversarial training encourages high quality samples from the model, but only indirectly enforces diversity among the samples. To overcome these drawbacks we make two contributions. First, we propose a novel extension to the variational autoencoders model by using deterministic invertible transformation layers to map samples from the decoder to the image space. This induces correlations among the pixels given the latent variables, improving over commonly used factorial decoders. Second, we propose a training approach that leverages coverage and quality based criteria. Our models obtain likelihood scores competitive with state-of-the-art likelihood-based models, while achieving sample quality typical of adversarially trained networks.
Abstract:Generative adversarial networks (GANs) are one of the most popular methods for generating images today. While impressive results have been validated by visual inspection, a number of quantitative criteria have emerged only recently. We argue here that the existing ones are insufficient and need to be in adequation with the task at hand. In this paper we introduce two measures based on image classification---GAN-train and GAN-test, which approximate the recall (diversity) and precision (quality of the image) of GANs respectively. We evaluate a number of recent GAN approaches based on these two measures and demonstrate a clear difference in performance. Furthermore, we observe that the increasing difficulty of the dataset, from CIFAR10 over CIFAR100 to ImageNet, shows an inverse correlation with the quality of the GANs, as clearly evident from our measures.
Abstract:Despite their success for object detection, convolutional neural networks are ill-equipped for incremental learning, i.e., adapting the original model trained on a set of classes to additionally detect objects of new classes, in the absence of the initial training data. They suffer from "catastrophic forgetting" - an abrupt degradation of performance on the original set of classes, when the training objective is adapted to the new classes. We present a method to address this issue, and learn object detectors incrementally, when neither the original training data nor annotations for the original classes in the new training set are available. The core of our proposed solution is a loss function to balance the interplay between predictions on the new classes and a new distillation loss which minimizes the discrepancy between responses for old classes from the original and the updated networks. This incremental learning can be performed multiple times, for a new set of classes in each step, with a moderate drop in performance compared to the baseline network trained on the ensemble of data. We present object detection results on the PASCAL VOC 2007 and COCO datasets, along with a detailed empirical analysis of the approach.
Abstract:Real-time scene understanding has become crucial in many applications such as autonomous driving. In this paper, we propose a deep architecture, called BlitzNet, that jointly performs object detection and semantic segmentation in one forward pass, allowing real-time computations. Besides the computational gain of having a single network to perform several tasks, we show that object detection and semantic segmentation benefit from each other in terms of accuracy. Experimental results for VOC and COCO datasets show state-of-the-art performance for object detection and segmentation among real time systems.