Abstract:Autonomous mobile robots offer promising solutions for labor shortages and increased operational efficiency. However, navigating safely and effectively in dynamic environments, particularly crowded areas, remains challenging. This paper proposes a novel framework that integrates Vision-Language Models (VLM) and Gaussian Process Regression (GPR) to generate dynamic crowd-density maps (``Abstraction Maps'') for autonomous robot navigation. Our approach utilizes VLM's capability to recognize abstract environmental concepts, such as crowd densities, and represents them probabilistically via GPR. Experimental results from real-world trials on a university campus demonstrated that robots successfully generated routes avoiding both static obstacles and dynamic crowds, enhancing navigation safety and adaptability.
Abstract:This study presents the development and experimental verification of a biomimetic manta ray robot for underwater autonomous exploration. Inspired by manta rays, the robot uses flapping motion for propulsion to minimize seabed disturbance and enhance efficiency compared to traditional screw propulsion. The robot features pectoral fins driven by servo motors and a streamlined control box to reduce fluid resistance. The control system, powered by a Raspberry Pi 3B, includes an IMU and pressure sensor for real-time monitoring and control. Experiments in a pool assessed the robot's swimming and diving capabilities. Results show stable swimming and diving motions with PD control. The robot is suitable for applications in environments like aquariums and fish nurseries, requiring minimal disturbance and efficient maneuverability. Our findings demonstrate the potential of bio-inspired robotic designs to improve ecological monitoring and underwater exploration.




Abstract:Wireless signal strength based localization can enable robust localization for robots using inexpensive sensors. For this, a location-to-signal-strength map has to be learned for each access point in the environment. Due to the ubiquity of Wireless networks in most environments, this can result in tens or hundreds of maps. To reduce the dimensionality of this problem, we employ autoencoders, which are a popular unsupervised approach for feature extraction and data compression. In particular, we propose the use of sparse autoencoders that learn latent spaces that preserve the relative distance between inputs. Distance invariance between input and latent spaces allows our system to successfully learn compact representations that allow precise data reconstruction but also have a low impact on localization performance when using maps from the latent space rather than the input space. We demonstrate the feasibility of our approach by performing experiments in outdoor environments.