Abstract:When a language model asserts that "the capital of Australia is Sydney," does it know this is wrong? We characterize the geometry of correctness representations across 9 models from 5 architecture families. The structure is simple: the discriminative signal occupies 3-8 dimensions, performance degrades with additional dimensions, and no nonlinear classifier improves over linear separation. Centroid distance in the low-dimensional subspace matches trained probe performance (0.90 AUC), enabling few-shot detection: on GPT-2, 25 labeled examples achieve 89% of full-data accuracy. We validate causally through activation steering: the learned direction produces 10.9 percentage point changes in error rates while random directions show no effect. Internal probes achieve 0.80-0.97 AUC; output-based methods (P(True), semantic entropy) achieve only 0.44-0.64 AUC. The correctness signal exists internally but is not expressed in outputs. That centroid distance matches probe performance indicates class separation is a mean shift, making detection geometric rather than learned.