Abstract:Document-level Relation Extraction (DocRE) involves identifying relations between entities across multiple sentences in a document. Evidence sentences, crucial for precise entity pair relationships identification, enhance focus on essential text segments, improving DocRE performance. However, existing evidence retrieval systems often overlook the collaborative nature among semantically similar entity pairs in the same document, hindering the effectiveness of the evidence retrieval task. To address this, we propose a novel evidence retrieval framework, namely CDER. CDER employs an attentional graph-based architecture to capture collaborative patterns and incorporates a dynamic sub-structure for additional robustness in evidence retrieval. Experimental results on the benchmark DocRE dataset show that CDER not only excels in the evidence retrieval task but also enhances overall performance of existing DocRE system.
Abstract:Document-level Relation Extraction (DocRE) aims to identify relationships between entity pairs within a document. However, most existing methods assume a uniform label distribution, resulting in suboptimal performance on real-world, imbalanced datasets. To tackle this challenge, we propose a novel data augmentation approach using generative models to enhance data from the embedding space. Our method leverages the Variational Autoencoder (VAE) architecture to capture all relation-wise distributions formed by entity pair representations and augment data for underrepresented relations. To better capture the multi-label nature of DocRE, we parameterize the VAE's latent space with a Diffusion Model. Additionally, we introduce a hierarchical training framework to integrate the proposed VAE-based augmentation module into DocRE systems. Experiments on two benchmark datasets demonstrate that our method outperforms state-of-the-art models, effectively addressing the long-tail distribution problem in DocRE.