Abstract:In agriculture, molecular communication (MC) is envisioned as a framework to address critical challenges such as smart pest control. While conventional approaches mostly rely on synthetic plant protection products, posing high risks for the environment, harnessing plant signaling processes can lead to innovative approaches for nature-inspired sustainable pest control. In this paper, we investigate an approach for sustainable pest control and reveal how the MC paradigm can be employed for analysis and optimization. In particular, we consider a system where herbivore-induced plant volatiles (HIPVs), specifically methyl salicylate (MeSA), is encapsulated into microspheres deployed on deployed on plant leaves. The controlled release of MeSA from the microspheres, acting as transmitters (TXs), supports pest deterrence and antagonist attraction, providing an eco-friendly alternative to synthetic plant protection products. Based on experimental data, we investigate the MeSA release kinetics and obtain an analytical model. To describe the propagation of MeSA in farming environments, we employ a three dimensional (3D) advection-diffusion model, incorporating realistic wind fields which are predominantly affecting particle propagation, and solve it by a finite difference method (FDM). The proposed model is used to investigate the MeSA distribution for different TX arrangements, representing different practical microsphere deployment strategies. Moreover, we introduce the coverage effectiveness index (CEI) as a novel metric to quantify the environmental coverage of MeSA. This analysis offers valuable guidance for the practical development of microspheres and their deployment aimed at enhancing coverage and, consequently, the attraction of antagonistic insects.