Abstract:Recently, Gaussian Splatting methods have emerged as a desirable substitute for prior Radiance Field methods for novel-view synthesis of scenes captured with multi-view images or videos. In this work, we propose a novel extension to 4D Gaussian Splatting for dynamic scenes. Drawing on ideas from residual learning, we hierarchically decompose the dynamic scene into a "video-segment-frame" structure, with segments dynamically adjusted by optical flow. Then, instead of directly predicting the time-dependent signals, we model the signal as the sum of video-constant values, segment-constant values, and frame-specific residuals, as inspired by the success of residual learning. This approach allows more flexible models that adapt to highly variable scenes. We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets, with the greatest improvements on complex scenes with large movements, occlusions, and fine details, where current methods degrade most.
Abstract:Data augmentation methods, especially SoTA interpolation-based methods such as Fair Mixup, have been widely shown to increase model fairness. However, this fairness is evaluated on metrics that do not capture model uncertainty and on datasets with only one, relatively large, minority group. As a remedy, multicalibration has been introduced to measure fairness while accommodating uncertainty and accounting for multiple minority groups. However, existing methods of improving multicalibration involve reducing initial training data to create a holdout set for post-processing, which is not ideal when minority training data is already sparse. This paper uses multicalibration to more rigorously examine data augmentation for classification fairness. We stress-test four versions of Fair Mixup on two structured data classification problems with up to 81 marginalized groups, evaluating multicalibration violations and balanced accuracy. We find that on nearly every experiment, Fair Mixup \textit{worsens} baseline performance and fairness, but the simple vanilla Mixup \textit{outperforms} both Fair Mixup and the baseline, especially when calibrating on small groups. \textit{Combining} vanilla Mixup with multicalibration post-processing, which enforces multicalibration through post-processing on a holdout set, further increases fairness.