Abstract:Accurately answering complex questions has consistently been a significant challenge for Large Language Models (LLMs). To address this, this paper proposes a multi-hop question decomposition method for complex questions, building upon research within the MQUAKE framework. Utilizing the LLAMA3 model, we systematically investigate the impact of multi-hop question decomposition within knowledge graphs on model comprehension and reasoning accuracy, both before and after model training. In our experiments, we systematically partitioned and converted the MQUAKE-T dataset into two distinct formats: a single-hop dataset designed for directly answering complex questions, and a multi-hop dataset constructed using the multi-hop question decomposition method. We then fine-tuned the LLAMA3 model on these datasets and conducted inference tests. Our results demonstrate that, without fine-tuning the LLM, the prediction performance based on the multi-hop question decomposition method significantly outperforms the method of directly answering complex questions. After fine-tuning using the LoRA (Low-Rank Adaptation) method, the performance of both approaches improved compared to the untrained baseline. Crucially, the method utilizing multi-hop decomposition consistently maintained its superiority. These findings validate the effectiveness of the multi-hop decomposition method both before and after training, demonstrating its capability to effectively enhance the LLM's ability to answer complex questions.
Abstract:To promote the widespread use of mobile robots in diverse fields, the performance of trajectory tracking must be ensured. To address the constraints and nonlinear features associated with mobile robot systems, we apply nonlinear model predictive control (MPC) to realize the trajectory tracking of mobile robots. Specifically, to alleviate the online computational complexity of nonlinear MPC, this paper devises a lattice piecewise affine (PWA) approximation method that can approximate both the nonlinear system and control law of explicit nonlinear MPC. The kinematic model of the mobile robot is successively linearized along the trajectory to obtain a linear time-varying description of the system, which is then expressed using a lattice PWA model. Subsequently, the nonlinear MPC problem can be transformed into a series of linear MPC problems. Furthermore, to reduce the complexity of online calculation of multiple linear MPC problems, we approximate the optimal solution of the linear MPC by using the lattice PWA model. That is, for different sampling states, the optimal control inputs are obtained, and lattice PWA approximations are constructed for the state control pairs. Simulations are performed to evaluate the performance of our method in comparison with the linear MPC and explicit linear MPC frameworks. The results show that compared with the explicit linear MPC, our method has a higher online computing speed and can decrease the offline computing time without significantly increasing the tracking error.