Abstract:Federated self-supervised learning (FSSL) combines the advantages of decentralized modeling and unlabeled representation learning, serving as a cutting-edge paradigm with strong potential for scalability and privacy preservation. Although FSSL has garnered increasing attention, research indicates that it remains vulnerable to backdoor attacks. Existing methods generally rely on visually obvious triggers, which makes it difficult to meet the requirements for stealth and practicality in real-world deployment. In this paper, we propose an imperceptible and effective backdoor attack method against FSSL, called IPBA. Our empirical study reveals that existing imperceptible triggers face a series of challenges in FSSL, particularly limited transferability, feature entanglement with augmented samples, and out-of-distribution properties. These issues collectively undermine the effectiveness and stealthiness of traditional backdoor attacks in FSSL. To overcome these challenges, IPBA decouples the feature distributions of backdoor and augmented samples, and introduces Sliced-Wasserstein distance to mitigate the out-of-distribution properties of backdoor samples, thereby optimizing the trigger generation process. Our experimental results on several FSSL scenarios and datasets show that IPBA significantly outperforms existing backdoor attack methods in performance and exhibits strong robustness under various defense mechanisms.
Abstract:With the rapid advancement of UAV technology, the problem of UAV coalition formation has become a hotspot. Therefore, designing task-driven multi-UAV coalition formation mechanism has become a challenging problem. However, existing coalition formation mechanisms suffer from low relevance between UAVs and task requirements, resulting in overall low coalition utility and unstable coalition structures. To address these problems, this paper proposed a novel multi-UAV coalition network collaborative task completion model, considering both coalition work capacity and task-requirement relationships. This model stimulated the formation of coalitions that match task requirements by using a revenue function based on the coalition's revenue threshold. Subsequently, an algorithm for coalition formation based on marginal utility was proposed. Specifically, the algorithm utilized Shapley value to achieve fair utility distribution within the coalition, evaluated coalition values based on marginal utility preference order, and achieved stable coalition partition through a limited number of iterations. Additionally, we theoretically proved that this algorithm has Nash equilibrium solution. Finally, experimental results demonstrated that the proposed algorithm, compared to currently classical algorithms, not only forms more stable coalitions but also further enhances the overall utility of coalitions effectively.