Abstract:Training implicit neural representations (INRs) to capture fine-scale details typically relies on iterative backpropagation and is often hindered by spectral bias when the target exhibits highly non-uniform frequency content. We propose ELM-INR, a backpropagation-free INR that decomposes the domain into overlapping subdomains and fits each local problem using an Extreme Learning Machine (ELM) in closed form, replacing iterative optimization with stable linear least-squares solutions. This design yields fast and numerically robust reconstruction by combining local predictors through a partition of unity. To understand where approximation becomes difficult under fixed local capacity, we analyze the method from a spectral Barron norm perspective, which reveals that global reconstruction error is dominated by regions with high spectral complexity. Building on this insight, we introduce BEAM, an adaptive mesh refinement strategy that balances spectral complexity across subdomains to improve reconstruction quality in capacity-constrained regimes.
Abstract:We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.