Abstract:In professional video compositing workflows, artists must manually create environmental interactions-such as shadows, reflections, dust, and splashes-between foreground subjects and background layers. Existing video generative models struggle to preserve the input video while adding such effects, and current video inpainting methods either require costly per-frame masks or yield implausible results. We introduce augmented compositing, a new task that synthesizes realistic, semi-transparent environmental effects conditioned on text prompts and input video layers, while preserving the original scene. To address this task, we present Over++, a video effect generation framework that makes no assumptions about camera pose, scene stationarity, or depth supervision. We construct a paired effect dataset tailored for this task and introduce an unpaired augmentation strategy that preserves text-driven editability. Our method also supports optional mask control and keyframe guidance without requiring dense annotations. Despite training on limited data, Over++ produces diverse and realistic environmental effects and outperforms existing baselines in both effect generation and scene preservation.
Abstract:Recent advances in Gaussian Splatting-based inverse rendering extend Gaussian primitives with shading parameters and physically grounded light transport, enabling high-quality material recovery from dense multi-view captures. However, these methods degrade sharply under sparse-view settings, where limited observations lead to severe ambiguity between geometry, reflectance, and lighting. We introduce GAINS (Gaussian-based Inverse rendering from Sparse multi-view captures), a two-stage inverse rendering framework that leverages learning-based priors to stabilize geometry and material estimation. GAINS first refines geometry using monocular depth/normal and diffusion priors, then employs segmentation, intrinsic image decomposition (IID), and diffusion priors to regularize material recovery. Extensive experiments on synthetic and real-world datasets show that GAINS significantly improves material parameter accuracy, relighting quality, and novel-view synthesis compared to state-of-the-art Gaussian-based inverse rendering methods, especially under sparse-view settings. Project page: https://patrickbail.github.io/gains/
Abstract:Neural rendering has made significant strides in 3D reconstruction and novel view synthesis. With the integration with physics, it opens up new applications. The inverse problem of estimating physics from visual data, however, still remains challenging, limiting its effectiveness for applications like physically accurate digital twin creation in robotics and XR. Existing methods that incorporate physics into neural rendering frameworks typically require dense multi-view videos as input, making them impractical for scalable, real-world use. When presented with sparse multi-view videos, the sequential optimization strategy used by existing approaches introduces significant error accumulation, e.g., poor initial 3D reconstruction leads to bad material parameter estimation in subsequent stages. Instead of sequential optimization, directly optimizing all parameters at the same time also fails due to the highly non-convex and often non-differentiable nature of the problem. We propose ProJo4D, a progressive joint optimization framework that gradually increases the set of jointly optimized parameters guided by their sensitivity, leading to fully joint optimization over geometry, appearance, physical state, and material property. Evaluations on PAC-NeRF and Spring-Gaus datasets show that ProJo4D outperforms prior work in 4D future state prediction, novel view rendering of future state, and material parameter estimation, demonstrating its effectiveness in physically grounded 4D scene understanding. For demos, please visit the project webpage: https://daniel03c1.github.io/ProJo4D/
Abstract:Accurate depth estimation enhances endoscopy navigation and diagnostics, but obtaining ground-truth depth in clinical settings is challenging. Synthetic datasets are often used for training, yet the domain gap limits generalization to real data. We propose a novel image-to-image translation framework that preserves structure while generating realistic textures from clinical data. Our key innovation integrates Stable Diffusion with ControlNet, conditioned on a latent representation extracted from a Per-Pixel Shading (PPS) map. PPS captures surface lighting effects, providing a stronger structural constraint than depth maps. Experiments show our approach produces more realistic translations and improves depth estimation over GAN-based MI-CycleGAN. Our code is publicly accessible at https://github.com/anaxqx/PPS-Ctrl.
Abstract:Image-based relighting of indoor rooms creates an immersive virtual understanding of the space, which is useful for interior design, virtual staging, and real estate. Relighting indoor rooms from a single image is especially challenging due to complex illumination interactions between multiple lights and cluttered objects featuring a large variety in geometrical and material complexity. Recently, generative models have been successfully applied to image-based relighting conditioned on a target image or a latent code, albeit without detailed local lighting control. In this paper, we introduce ScribbleLight, a generative model that supports local fine-grained control of lighting effects through scribbles that describe changes in lighting. Our key technical novelty is an Albedo-conditioned Stable Image Diffusion model that preserves the intrinsic color and texture of the original image after relighting and an encoder-decoder-based ControlNet architecture that enables geometry-preserving lighting effects with normal map and scribble annotations. We demonstrate ScribbleLight's ability to create different lighting effects (e.g., turning lights on/off, adding highlights, cast shadows, or indirect lighting from unseen lights) from sparse scribble annotations.
Abstract:In this paper, we develop a personalized video relighting algorithm that produces high-quality and temporally consistent relit video under any pose, expression, and lighting conditions in real-time. Existing relighting algorithms typically rely either on publicly available synthetic data, which yields poor relighting results, or instead on Light Stage data which is inaccessible and is not publicly available. We show that by casually capturing video of a user watching YouTube videos on a monitor we can train a personalized algorithm capable of producing high-quality relighting under any condition. Our key contribution is a novel neural relighting architecture that effectively separates the intrinsic appearance features, geometry and reflectance, from the source lighting and then combines it with the target lighting to generate a relit image. This neural architecture enables smoothing of intrinsic appearance features leading to temporally stable video relighting. Both qualitative and quantitative evaluations show that our relighting architecture improves portrait image relighting quality and temporal consistency over state-of-the-art approaches on both casually captured Light Stage at Your Desk (LSYD) data and Light Stage captured One Light At a Time (OLAT) datasets.