Abstract:The paradigm of Earth Observation analysis is shifting from static deep learning models to autonomous agentic AI. Although recent vision foundation models and multimodal large language models advance representation learning, they often lack the sequential planning and active tool orchestration required for complex geospatial workflows. This survey presents the first comprehensive review of agentic AI in remote sensing. We introduce a unified taxonomy distinguishing between single-agent copilots and multi-agent systems while analyzing architectural foundations such as planning mechanisms, retrieval-augmented generation, and memory structures. Furthermore, we review emerging benchmarks that move the evaluation from pixel-level accuracy to trajectory-aware reasoning correctness. By critically examining limitations in grounding, safety, and orchestration, this work outlines a strategic roadmap for the development of robust, autonomous geospatial intelligence.
Abstract:Internet of Vehicles (IoV) systems, while offering significant advancements in transportation efficiency and safety, introduce substantial security vulnerabilities due to their highly interconnected nature. These dynamic systems produce massive amounts of data between vehicles, infrastructure, and cloud services and present a highly distributed framework with a wide attack surface. In considering network-centered attacks on IoV systems, attacks such as Denial-of-Service (DoS) can prohibit the communication of essential physical traffic safety information between system elements, illustrating that the security concerns for these systems go beyond the traditional confidentiality, integrity, and availability concerns of enterprise systems. Given the complexity and volume of data generated by IoV systems, traditional security mechanisms are often inadequate for accurately detecting sophisticated and evolving cyberattacks. Here, we present an unsupervised autoencoder method trained entirely on benign network data for the purpose of unseen attack detection in IoV networks. We leverage a weighted combination of reconstruction and triplet margin loss to guide the autoencoder training and develop a diverse representation of the benign training set. We conduct extensive experiments on recent network intrusion datasets from two different application domains, industrial IoT and home IoT, that represent the modern IoV task. We show that our method performs robustly for all unseen attack types, with roughly 99% accuracy on benign data and between 97% and 100% performance on anomaly data. We extend these results to show that our model is adaptable through the use of transfer learning, achieving similarly high results while leveraging domain features from one domain to another.