Abstract:AI weather prediction ensembles with latent noise injection and optimized with the continuous ranked probability score (CRPS) have produced both accurate and well-calibrated predictions with far less computational cost compared with diffusion-based methods. However, current CRPS ensemble approaches vary in their training strategies and noise injection mechanisms, with most injecting noise globally throughout the network via conditional normalization. This structure increases training expense and limits the physical interpretability of the stochastic perturbations. We introduce Stochastic Decomposition Layers (SDL) for converting deterministic machine learning weather models into probabilistic ensemble systems. Adapted from StyleGAN's hierarchical noise injection, SDL applies learned perturbations at three decoder scales through latent-driven modulation, per-pixel noise, and channel scaling. When applied to WXFormer via transfer learning, SDL requires less than 2\% of the computational cost needed to train the baseline model. Each ensemble member is generated from a compact latent tensor (5 MB), enabling perfect reproducibility and post-inference spread adjustment through latent rescaling. Evaluation on 2022 ERA5 reanalysis shows ensembles with spread-skill ratios approaching unity and rank histograms that progressively flatten toward uniformity through medium-range forecasts, achieving calibration competitive with operational IFS-ENS. Multi-scale experiments reveal hierarchical uncertainty: coarse layers modulate synoptic patterns while fine layers control mesoscale variability. The explicit latent parameterization provides interpretable uncertainty quantification for operational forecasting and climate applications.
Abstract:Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.