Abstract:The increasing demand for reliable, high-capacity communication during large-scale outdoor events poses significant challenges for traditional Terrestrial Networks (TNs), which often struggle to provide consistent coverage in high-density environments. This paper presents a novel 6G radio network planning framework that integrates Non-Terrestrial Networks (NTNs) with Reconfigurable Intelligent Surfaces (RISs) to deliver ubiquitous coverage and enhanced network capacity. Our framework overcomes the limitations of conventional deployable base stations by leveraging NTN architectures, including Low Earth Orbit (LEO) satellites and passive RIS platforms seamlessly integrated with Beyond 5G (B5G) TNs. By incorporating advanced B5G technologies such as Massive Multiple Input Multiple Output (mMIMO) and beamforming, and by optimizing spectrum utilization across the C, S, and Ka bands, we implement a rigorous interference management strategy based on a dynamic SINR model. Comprehensive calculations and simulations validate the proposed framework, demonstrating significant improvements in connectivity, reliability, and cost-efficiency in crowded scenarios. This integration strategy represents a promising solution for meeting the evolving demands of future 6G networks.
Abstract:We summarize recent progress in ultrafast Complementary Metal Oxide Semiconductor (CMOS) image sensor development and the application of neural networks for post-processing of CMOS and charge-coupled device (CCD) image data to achieve sub-pixel resolution (thus $super$-$resolution$). The combination of novel CMOS pixel designs and data-enabled image post-processing provides a promising path towards ultrafast high-resolution multi-modal radiographic imaging and tomography applications.