Abstract:We develop a framework for non-invasive volumetric indoor airflow estimation from a single viewpoint using background-oriented schlieren (BOS) measurements and physics-informed reconstruction. Our framework utilizes a light projector that projects a pattern onto a target back-wall and a camera that observes small distortions in the light pattern. While the single-view BOS tomography problem is severely ill-posed, our proposed framework addresses this using: (1) improved ray tracing, (2) a physics-based light rendering approach and loss formulation, and (3) a physics-based regularization using a physics-informed neural network (PINN) to ensure that the reconstructed airflow is consistent with the governing equations for buoyancy-driven flows.




Abstract:Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in search and rescue, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations -- a plan view plus heights -- and a 180$^{\circ}$ field of view (FOV) for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension.