Abstract:In this paper, we propose two nonparametric methods used in the forecasting of functional time-dependent data, namely functional singular spectrum analysis recurrent forecasting and vector forecasting. Both algorithms utilize the results of functional singular spectrum analysis and past observations in order to predict future data points where recurrent forecasting predicts one function at a time and the vector forecasting makes predictions using functional vectors. We compare our forecasting methods to a gold standard algorithm used in the prediction of functional, time-dependent data by way of simulation and real data and we find our techniques do better for periodic stochastic processes.
Abstract:In this work, we develop multivariate functional singular spectrum analysis (MFSSA) over different dimensional domains which is the functional extension of multivariate singular spectrum analysis (MSSA). In the following, we provide all of the necessary theoretical details supporting the work as well as the implementation strategy that contains the recipes needed for the algorithm. We provide a simulation study showcasing the better performance in reconstruction accuracy of a multivariate functional time series (MFTS) signal found using MFSSA as compared to other approaches and we give a real data study showing how MFSSA enriches analysis using intraday temperature curves and remote sensing images of vegetation. MFSSA is available for use through the Rfssa R package.