Abstract:There has been a significant progress in text conditional image generation models. Recent advancements in this field depend not only on improvements in model structures, but also vast quantities of text-image paired datasets. However, creating these kinds of datasets is very costly and requires a substantial amount of labor. Famous face datasets don't have corresponding text captions, making it difficult to develop text conditional image generation models on these datasets. Some research has focused on developing text to image generation models using only images without text captions. Here, we propose CLIP-VQDiffusion, which leverage the pretrained CLIP model to provide multimodal text-image representations and strong image generation capabilities. On the FFHQ dataset, our model outperformed previous state-of-the-art methods by 4.4% in clipscore and generated very realistic images even when the text was both in and out of distribution. The pretrained models and codes will soon be available at https://github.com/INFINIQ-AI1/CLIPVQDiffusion
Abstract:Few-shot object detection, which focuses on detecting novel objects with few labels, is an emerging challenge in the community. Recent studies show that adapting a pre-trained model or modified loss function can improve performance. In this paper, we explore leveraging the power of Contrastive Language-Image Pre-training (CLIP) and hard negative classification loss in low data setting. Specifically, we propose Re-scoring using Image-language Similarity for Few-shot object detection (RISF) which extends Faster R-CNN by introducing Calibration Module using CLIP (CM-CLIP) and Background Negative Re-scale Loss (BNRL). The former adapts CLIP, which performs zero-shot classification, to re-score the classification scores of a detector using image-class similarities, the latter is modified classification loss considering the punishment for fake backgrounds as well as confusing categories on a generalized few-shot object detection dataset. Extensive experiments on MS-COCO and PASCAL VOC show that the proposed RISF substantially outperforms the state-of-the-art approaches. The code will be available.