Abstract:In this paper, we consider the problem of sequentially optimizing a black-box function $f$ based on noisy samples and bandit feedback. We assume that $f$ is smooth in the sense of having a bounded norm in some reproducing kernel Hilbert space (RKHS), yielding a commonly-considered non-Bayesian form of Gaussian process bandit optimization. We provide algorithm-independent lower bounds on the simple regret, measuring the suboptimality of a single point reported after $T$ rounds, and on the cumulative regret, measuring the sum of regrets over the $T$ chosen points. For the isotropic squared-exponential kernel in $d$ dimensions, we find that an average simple regret of $\epsilon$ requires $T = \Omega\big(\frac{1}{\epsilon^2} (\log\frac{1}{\epsilon})^{d/2}\big)$, and the average cumulative regret is at least $\Omega\big( \sqrt{T(\log T)^{d/2}} \big)$, thus matching existing upper bounds up to the replacement of $d/2$ by $2d+O(1)$ in both cases. For the Mat\'ern-$\nu$ kernel, we give analogous bounds of the form $\Omega\big( (\frac{1}{\epsilon})^{2+d/\nu}\big)$ and $\Omega\big( T^{\frac{\nu + d}{2\nu + d}} \big)$, and discuss the resulting gaps to the existing upper bounds.
Abstract:We consider the problem of Bayesian optimization (BO) in one dimension, under a Gaussian process prior and Gaussian sampling noise. We provide a theoretical analysis showing that, under fairly mild technical assumptions on the kernel, the best possible cumulative regret up to time $T$ behaves as $\Omega(\sqrt{T})$ and $O(\sqrt{T\log T})$. This gives a tight characterization up to a $\sqrt{\log T}$ factor, and includes the first non-trivial lower bound for noisy BO. Our assumptions are satisfied, for example, by the squared exponential and Mat\'ern-$\nu$ kernels, with the latter requiring $\nu > 2$. Our results certify the near-optimality of existing bounds (Srinivas {\em et al.}, 2009) for the SE kernel, while proving them to be strictly suboptimal for the Mat\'ern kernel with $\nu > 2$.
Abstract:In the area of magnetic resonance imaging (MRI), an extensive range of non-linear reconstruction algorithms have been proposed that can be used with general Fourier subsampling patterns. However, the design of these subsampling patterns has typically been considered in isolation from the reconstruction rule and the anatomy under consideration. In this paper, we propose a learning-based framework for optimizing MRI subsampling patterns for a specific reconstruction rule and anatomy, considering both the noiseless and noisy settings. Our learning algorithm has access to a representative set of training signals, and searches for a sampling pattern that performs well on average for the signals in this set. We present a novel parameter-free greedy mask selection method, and show it to be effective for a variety of reconstruction rules and performance metrics. Moreover we also support our numerical findings by providing a rigorous justification of our framework via statistical learning theory.
Abstract:Bayesian optimization (BO) is a popular technique for sequential black-box function optimization, with applications including parameter tuning, robotics, environmental monitoring, and more. One of the most important challenges in BO is the development of algorithms that scale to high dimensions, which remains a key open problem despite recent progress. In this paper, we consider the approach of Kandasamy et al. (2015), in which the high-dimensional function decomposes as a sum of lower-dimensional functions on subsets of the underlying variables. In particular, we significantly generalize this approach by lifting the assumption that the subsets are disjoint, and consider additive models with arbitrary overlap among the subsets. By representing the dependencies via a graph, we deduce an efficient message passing algorithm for optimizing the acquisition function. In addition, we provide an algorithm for learning the graph from samples based on Gibbs sampling. We empirically demonstrate the effectiveness of our methods on both synthetic and real-world data.
Abstract:In this paper, we study the pooled data problem of identifying the labels associated with a large collection of items, based on a sequence of pooled tests revealing the counts of each label within the pool. In the noiseless setting, we identify an exact asymptotic threshold on the required number of tests with optimal decoding, and prove a phase transition between complete success and complete failure. In addition, we present a novel noisy variation of the problem, and provide an information-theoretic framework for characterizing the required number of tests for general random noise models. Our results reveal that noise can make the problem considerably more difficult, with strict increases in the scaling laws even at low noise levels. Finally, we demonstrate similar behavior in an approximate recovery setting, where a given number of errors is allowed in the decoded labels.
Abstract:We study the problem of maximizing a monotone submodular function subject to a cardinality constraint $k$, with the added twist that a number of items $\tau$ from the returned set may be removed. We focus on the worst-case setting considered in (Orlin et al., 2016), in which a constant-factor approximation guarantee was given for $\tau = o(\sqrt{k})$. In this paper, we solve a key open problem raised therein, presenting a new Partitioned Robust (PRo) submodular maximization algorithm that achieves the same guarantee for more general $\tau = o(k)$. Our algorithm constructs partitions consisting of buckets with exponentially increasing sizes, and applies standard submodular optimization subroutines on the buckets in order to construct the robust solution. We numerically demonstrate the performance of PRo in data summarization and influence maximization, demonstrating gains over both the greedy algorithm and the algorithm of (Orlin et al., 2016).
Abstract:We consider the problem of estimating the underlying graph associated with a Markov random field, with the added twist that the decoding algorithm can iteratively choose which subsets of nodes to sample based on the previous samples, resulting in an active learning setting. Considering both Ising and Gaussian models, we provide algorithm-independent lower bounds for high-probability recovery within the class of degree-bounded graphs. Our main results are minimax lower bounds for the active setting that match the best known lower bounds for the passive setting, which in turn are known to be tight in several cases of interest. Our analysis is based on Fano's inequality, along with novel mutual information bounds for the active learning setting, and the application of restricted graph ensembles. While we consider ensembles that are similar or identical to those used in the passive setting, we require different analysis techniques, with a key challenge being bounding a mutual information quantity associated with observed subsets of nodes, as opposed to full observations.
Abstract:We present a new algorithm, truncated variance reduction (TruVaR), that treats Bayesian optimization (BO) and level-set estimation (LSE) with Gaussian processes in a unified fashion. The algorithm greedily shrinks a sum of truncated variances within a set of potential maximizers (BO) or unclassified points (LSE), which is updated based on confidence bounds. TruVaR is effective in several important settings that are typically non-trivial to incorporate into myopic algorithms, including pointwise costs and heteroscedastic noise. We provide a general theoretical guarantee for TruVaR covering these aspects, and use it to recover and strengthen existing results on BO and LSE. Moreover, we provide a new result for a setting where one can select from a number of noise levels having associated costs. We demonstrate the effectiveness of the algorithm on both synthetic and real-world data sets.
Abstract:The support recovery problem consists of determining a sparse subset of a set of variables that is relevant in generating a set of observations, and arises in a diverse range of settings such as compressive sensing, and subset selection in regression, and group testing. In this paper, we take a unified approach to support recovery problems, considering general probabilistic models relating a sparse data vector to an observation vector. We study the information-theoretic limits of both exact and partial support recovery, taking a novel approach motivated by thresholding techniques in channel coding. We provide general achievability and converse bounds characterizing the trade-off between the error probability and number of measurements, and we specialize these to the linear, 1-bit, and group testing models. In several cases, our bounds not only provide matching scaling laws in the necessary and sufficient number of measurements, but also sharp thresholds with matching constant factors. Our approach has several advantages over previous approaches: For the achievability part, we obtain sharp thresholds under broader scalings of the sparsity level and other parameters (e.g., signal-to-noise ratio) compared to several previous works, and for the converse part, we not only provide conditions under which the error probability fails to vanish, but also conditions under which it tends to one.
Abstract:In this paper, we consider the problem of estimating the underlying graph associated with an Ising model given a number of independent and identically distributed samples. We adopt an \emph{approximate recovery} criterion that allows for a number of missed edges or incorrectly-included edges, in contrast with the widely-studied exact recovery problem. Our main results provide information-theoretic lower bounds on the sample complexity for graph classes imposing constraints on the number of edges, maximal degree, and other properties. We identify a broad range of scenarios where, either up to constant factors or logarithmic factors, our lower bounds match the best known lower bounds for the exact recovery criterion, several of which are known to be tight or near-tight. Hence, in these cases, approximate recovery has a similar difficulty to exact recovery in the minimax sense. Our bounds are obtained via a modification of Fano's inequality for handling the approximate recovery criterion, along with suitably-designed ensembles of graphs that can broadly be classed into two categories: (i) Those containing graphs that contain several isolated edges or cliques and are thus difficult to distinguish from the empty graph; (ii) Those containing graphs for which certain groups of nodes are highly correlated, thus making it difficult to determine precisely which edges connect them. We support our theoretical results on these ensembles with numerical experiments.