Abstract:Large language models can represent a variety of personas but typically default to a helpful Assistant identity cultivated during post-training. We investigate the structure of the space of model personas by extracting activation directions corresponding to diverse character archetypes. Across several different models, we find that the leading component of this persona space is an "Assistant Axis," which captures the extent to which a model is operating in its default Assistant mode. Steering towards the Assistant direction reinforces helpful and harmless behavior; steering away increases the model's tendency to identify as other entities. Moreover, steering away with more extreme values often induces a mystical, theatrical speaking style. We find this axis is also present in pre-trained models, where it primarily promotes helpful human archetypes like consultants and coaches and inhibits spiritual ones. Measuring deviations along the Assistant Axis predicts "persona drift," a phenomenon where models slip into exhibiting harmful or bizarre behaviors that are uncharacteristic of their typical persona. We find that persona drift is often driven by conversations demanding meta-reflection on the model's processes or featuring emotionally vulnerable users. We show that restricting activations to a fixed region along the Assistant Axis can stabilize model behavior in these scenarios -- and also in the face of adversarial persona-based jailbreaks. Our results suggest that post-training steers models toward a particular region of persona space but only loosely tethers them to it, motivating work on training and steering strategies that more deeply anchor models to a coherent persona.




Abstract:As API access becomes a primary interface to large language models (LLMs), users often interact with black-box systems that offer little transparency into the deployed model. To reduce costs or maliciously alter model behaviors, API providers may discreetly serve quantized or fine-tuned variants, which can degrade performance and compromise safety. Detecting such substitutions is difficult, as users lack access to model weights and, in most cases, even output logits. To tackle this problem, we propose a rank-based uniformity test that can verify the behavioral equality of a black-box LLM to a locally deployed authentic model. Our method is accurate, query-efficient, and avoids detectable query patterns, making it robust to adversarial providers that reroute or mix responses upon the detection of testing attempts. We evaluate the approach across diverse threat scenarios, including quantization, harmful fine-tuning, jailbreak prompts, and full model substitution, showing that it consistently achieves superior statistical power over prior methods under constrained query budgets.
Abstract:Sentence embeddings are central to modern NLP and AI systems, yet little is known about their internal structure. While we can compare these embeddings using measures such as cosine similarity, the contributing features are not human-interpretable, and the content of an embedding seems untraceable, as it is masked by complex neural transformations and a final pooling operation that combines individual token embeddings. To alleviate this issue, we propose a new method to mechanistically decompose sentence embeddings into interpretable components, by using dictionary learning on token-level representations. We analyze how pooling compresses these features into sentence representations, and assess the latent features that reside in a sentence embedding. This bridges token-level mechanistic interpretability with sentence-level analysis, making for more transparent and controllable representations. In our studies, we obtain several interesting insights into the inner workings of sentence embedding spaces, for instance, that many semantic and syntactic aspects are linearly encoded in the embeddings.