Abstract:Natural disaster monitoring through continuous satellite observation requires processing multi-temporal data under strict operational constraints. This paper addresses flood detection, a critical application for hazard management, by developing an onboard change detection system that operates within the memory and computational limits of small satellites. We propose History Injection mechanism for Transformer models (HiT), that maintains historical context from previous observations while reducing data storage by over 99\% of original image size. Moreover, testing on the STTORM-CD flood dataset confirms that the HiT mechanism within the Prithvi-tiny foundation model maintains detection accuracy compared to the bitemporal baseline. The proposed HiT-Prithvi model achieved 43 FPS on Jetson Orin Nano, a representative onboard hardware used in nanosats. This work establishes a practical framework for satellite-based continuous monitoring of natural disasters, supporting real-time hazard assessment without dependency on ground-based processing infrastructure. Architecture as well as model checkpoints is available at https://github.com/zaitra/HiT-change-detection
Abstract:Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.