Abstract:Musical (MSS) source separation of western popular music using non-causal deep learning can be very effective. In contrast, MSS for classical music is an unsolved problem. Classical ensembles are harder to separate than popular music because of issues such as the inherent greater variation in the music; the sparsity of recordings with ground truth for supervised training; and greater ambiguity between instruments. The Cadenza project has been exploring MSS for classical music. This is being done so music can be remixed to improve listening experiences for people with hearing loss. To enable the work, a new database of synthesized woodwind ensembles was created to overcome instrumental imbalances in the EnsembleSet. For the MSS, a set of ConvTasNet models was used with each model being trained to extract a string or woodwind instrument. ConvTasNet was chosen because it enabled both causal and non-causal approaches to be tested. Non-causal approaches have dominated MSS work and are useful for recorded music, but for live music or processing on hearing aids, causal signal processing is needed. The MSS performance was evaluated on the two small datasets (Bach10 and URMP) of real instrument recordings where the ground-truth is available. The performances of the causal and non-causal systems were similar. Comparing the average Signal-to-Distortion (SDR) of the synthesized validation set (6.2 dB causal; 6.9 non-causal), to the real recorded evaluation set (0.3 dB causal, 0.4 dB non-causal), shows that mismatch between synthesized and recorded data is a problem. Future work needs to either gather more real recordings that can be used for training, or to improve the realism and diversity of the synthesized recordings to reduce the mismatch...
Abstract:It is well established that listening to music is an issue for those with hearing loss, and hearing aids are not a universal solution. How can machine learning be used to address this? This paper details the first application of the open challenge methodology to use machine learning to improve audio quality of music for those with hearing loss. The first challenge was a stand-alone competition (CAD1) and had 9 entrants. The second was an 2024 ICASSP grand challenge (ICASSP24) and attracted 17 entrants. The challenge tasks concerned demixing and remixing pop/rock music to allow a personalised rebalancing of the instruments in the mix, along with amplification to correct for raised hearing thresholds. The software baselines provided for entrants to build upon used two state-of-the-art demix algorithms: Hybrid Demucs and Open-Unmix. Evaluation of systems was done using the objective metric HAAQI, the Hearing-Aid Audio Quality Index. No entrants improved on the best baseline in CAD1 because there was insufficient room for improvement. Consequently, for ICASSP24 the scenario was made more difficult by using loudspeaker reproduction and specified gains to be applied before remixing. This also made the scenario more useful for listening through hearing aids. 9 entrants scored better than the the best ICASSP24 baseline. Most entrants used a refined version of Hybrid Demucs and NAL-R amplification. The highest scoring system combined the outputs of several demixing algorithms in an ensemble approach. These challenges are now open benchmarks for future research with the software and data being freely available.
Abstract:Supervised models for speech enhancement are trained using artificially generated mixtures of clean speech and noise signals. However, the synthetic training conditions may not accurately reflect real-world conditions encountered during testing. This discrepancy can result in poor performance when the test domain significantly differs from the synthetic training domain. To tackle this issue, the UDASE task of the 7th CHiME challenge aimed to leverage real-world noisy speech recordings from the test domain for unsupervised domain adaptation of speech enhancement models. Specifically, this test domain corresponds to the CHiME-5 dataset, characterized by real multi-speaker and conversational speech recordings made in noisy and reverberant domestic environments, for which ground-truth clean speech signals are not available. In this paper, we present the objective and subjective evaluations of the systems that were submitted to the CHiME-7 UDASE task, and we provide an analysis of the results. This analysis reveals a limited correlation between subjective ratings and several supervised nonintrusive performance metrics recently proposed for speech enhancement. Conversely, the results suggest that more traditional intrusive objective metrics can be used for in-domain performance evaluation using the reverberant LibriCHiME-5 dataset developed for the challenge. The subjective evaluation indicates that all systems successfully reduced the background noise, but always at the expense of increased distortion. Out of the four speech enhancement methods evaluated subjectively, only one demonstrated an improvement in overall quality compared to the unprocessed noisy speech, highlighting the difficulty of the task. The tools and audio material created for the CHiME-7 UDASE task are shared with the community.