Alert button
Picture for John D. Chodera

John D. Chodera

Alert button

OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials

Add code
Bookmark button
Alert button
Oct 04, 2023
Peter Eastman, Raimondas Galvelis, Raúl P. Peláez, Charlles R. A. Abreu, Stephen E. Farr, Emilio Gallicchio, Anton Gorenko, Michael M. Henry, Frank Hu, Jing Huang, Andreas Krämer, Julien Michel, Joshua A. Mitchell, Vijay S. Pande, João PGLM Rodrigues, Jaime Rodriguez-Guerra, Andrew C. Simmonett, Jason Swails, Ivy Zhang, John D. Chodera, Gianni De Fabritiis, Thomas E. Markland

Figure 1 for OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Figure 2 for OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Figure 3 for OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Figure 4 for OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Viaarxiv icon

Espaloma-0.3.0: Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond

Add code
Bookmark button
Alert button
Jul 13, 2023
Kenichiro Takaba, Iván Pulido, Mike Henry, Hugo MacDermott-Opeskin, John D. Chodera, Yuanqing Wang

Figure 1 for Espaloma-0.3.0: Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond
Figure 2 for Espaloma-0.3.0: Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond
Figure 3 for Espaloma-0.3.0: Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond
Figure 4 for Espaloma-0.3.0: Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond
Viaarxiv icon

EspalomaCharge: Machine learning-enabled ultra-fast partial charge assignment

Add code
Bookmark button
Alert button
Feb 16, 2023
Yuanqing Wang, Iván Pulido, Kenichiro Takaba, Benjamin Kaminow, Jenke Scheen, Lily Wang, John D. Chodera

Figure 1 for EspalomaCharge: Machine learning-enabled ultra-fast partial charge assignment
Figure 2 for EspalomaCharge: Machine learning-enabled ultra-fast partial charge assignment
Figure 3 for EspalomaCharge: Machine learning-enabled ultra-fast partial charge assignment
Figure 4 for EspalomaCharge: Machine learning-enabled ultra-fast partial charge assignment
Viaarxiv icon

Spatial Attention Kinetic Networks with E(n)-Equivariance

Add code
Bookmark button
Alert button
Jan 24, 2023
Yuanqing Wang, John D. Chodera

Figure 1 for Spatial Attention Kinetic Networks with E(n)-Equivariance
Figure 2 for Spatial Attention Kinetic Networks with E(n)-Equivariance
Figure 3 for Spatial Attention Kinetic Networks with E(n)-Equivariance
Figure 4 for Spatial Attention Kinetic Networks with E(n)-Equivariance
Viaarxiv icon

SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials

Add code
Bookmark button
Alert button
Sep 21, 2022
Peter Eastman, Pavan Kumar Behara, David L. Dotson, Raimondas Galvelis, John E. Herr, Josh T. Horton, Yuezhi Mao, John D. Chodera, Benjamin P. Pritchard, Yuanqing Wang, Gianni De Fabritiis, Thomas E. Markland

Figure 1 for SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Figure 2 for SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Figure 3 for SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Figure 4 for SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Viaarxiv icon

NNP/MM: Fast molecular dynamics simulations with machine learning potentials and molecular mechanics

Add code
Bookmark button
Alert button
Jan 20, 2022
Raimondas Galvelis, Alejandro Varela-Rial, Stefan Doerr, Roberto Fino, Peter Eastman, Thomas E. Markland, John D. Chodera, Gianni De Fabritiis

Viaarxiv icon

End-to-End Differentiable Molecular Mechanics Force Field Construction

Add code
Bookmark button
Alert button
Oct 02, 2020
Yuanqing Wang, Josh Fass, John D. Chodera

Figure 1 for End-to-End Differentiable Molecular Mechanics Force Field Construction
Figure 2 for End-to-End Differentiable Molecular Mechanics Force Field Construction
Figure 3 for End-to-End Differentiable Molecular Mechanics Force Field Construction
Figure 4 for End-to-End Differentiable Molecular Mechanics Force Field Construction
Viaarxiv icon