Abstract:Current advances in AI and its applicability have highlighted the need to ensure its trustworthiness for legal, ethical, and even commercial reasons. Sub-symbolic machine learning algorithms, such as the LLMs, simulate reasoning but hallucinate and their decisions cannot be explained or audited (crucial aspects for trustworthiness). On the other hand, rule-based reasoners, such as Cyc, are able to provide the chain of reasoning steps but are complex and use a large number of reasoners. We propose a middle ground using s(CASP), a goal-directed constraint-based answer set programming reasoner that employs a small number of mechanisms to emulate reliable and explainable human-style commonsense reasoning. In this paper, we explain how s(CASP) supports the 16 desiderata for trustworthy AI introduced by Doug Lenat and Gary Marcus (2023), and two additional ones: inconsistency detection and the assumption of alternative worlds. To illustrate the feasibility and synergies of s(CASP), we present a range of diverse applications, including a conversational chatbot and a virtually embodied reasoner.
Abstract:Understanding the meaning of a text is a fundamental challenge of natural language understanding (NLU) research. An ideal NLU system should process a language in a way that is not exclusive to a single task or a dataset. Keeping this in mind, we have introduced a novel knowledge driven semantic representation approach for English text. By leveraging the VerbNet lexicon, we are able to map syntax tree of the text to its commonsense meaning represented using basic knowledge primitives. The general purpose knowledge represented from our approach can be used to build any reasoning based NLU system that can also provide justification. We applied this approach to construct two NLU applications that we present here: SQuARE (Semantic-based Question Answering and Reasoning Engine) and StaCACK (Stateful Conversational Agent using Commonsense Knowledge). Both these systems work by "truly understanding" the natural language text they process and both provide natural language explanations for their responses while maintaining high accuracy.