Abstract:Recent advances in graph machine learning have shifted to data-centric paradigms, driven by two emerging fields: (1) Federated graph learning (FGL) enables multi-client collaboration but faces challenges from data and task heterogeneity, limiting its practicality; (2) Graph foundation models (GFM) offer strong domain generalization but are usually trained on single machines, missing out on cross-silo data and resources. These paradigms are complementary, and their integration brings notable benefits. Motivated by this, we propose FedGFM, a novel decentralized GFM training paradigm. However, a key challenge is knowledge entanglement, where multi-domain knowledge merges into indistinguishable representations, hindering downstream adaptation. To address this, we present FedGFM+, an enhanced framework with two core modules to reduce knowledge entanglement: (1) AncDAI: A global anchor-based domain-aware initialization strategy. Before pre-training, each client encodes its local graph into domain-specific prototypes that serve as semantic anchors. Synthetic embeddings around these anchors initialize the global model. We theoretically prove these prototypes are distinguishable across domains, providing a strong inductive bias to disentangle domain-specific knowledge. (2) AdaDPP: A local adaptive domain-sensitive prompt pool. Each client learns a lightweight graph prompt capturing domain semantics during pre-training. During fine-tuning, prompts from all clients form a pool from which the GFM selects relevant prompts to augment target graph attributes, improving downstream adaptation. FedGFM+ is evaluated on 8 diverse benchmarks across multiple domains and tasks, outperforming 20 baselines from supervised learning, FGL, and federated GFM variants.
Abstract:With the increasing prevalence of cross-domain Text-Attributed Graph (TAG) Data (e.g., citation networks, recommendation systems, social networks, and ai4science), the integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) into a unified Model architecture (e.g., LLM as enhancer, LLM as collaborators, LLM as predictor) has emerged as a promising technological paradigm. The core of this new graph learning paradigm lies in the synergistic combination of GNNs' ability to capture complex structural relationships and LLMs' proficiency in understanding informative contexts from the rich textual descriptions of graphs. Therefore, we can leverage graph description texts with rich semantic context to fundamentally enhance Data quality, thereby improving the representational capacity of model-centric approaches in line with data-centric machine learning principles. By leveraging the strengths of these distinct neural network architectures, this integrated approach addresses a wide range of TAG-based Task (e.g., graph learning, graph reasoning, and graph question answering), particularly in complex industrial scenarios (e.g., supervised, few-shot, and zero-shot settings). In other words, we can treat text as a medium to enable cross-domain generalization of graph learning Model, allowing a single graph model to effectively handle the diversity of downstream graph-based Task across different data domains. This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies in the rapidly evolving landscape of LLM. We consistently maintain the related open-source materials at \url{https://github.com/xkLi-Allen/Awesome-GNN-in-LLMs-Papers}.