Abstract:Knowledge-based visual question answering (KVQA) task aims to answer questions that require additional external knowledge as well as an understanding of images and questions. Recent studies on KVQA inject an external knowledge in a multi-modal form, and as more knowledge is used, irrelevant information may be added and can confuse the question answering. In order to properly use the knowledge, this study proposes the following: 1) we introduce a novel semantic inconsistency measure computed from caption uncertainty and semantic similarity; 2) we suggest a new external knowledge assimilation method based on the semantic inconsistency measure and apply it to integrate explicit knowledge and implicit knowledge for KVQA; 3) the proposed method is evaluated with the OK-VQA dataset and achieves the state-of-the-art performance.
Abstract:Increasing numbers of patients with disabilities or elderly people with mobility issues often suffer from a pressure ulcer. The affected areas need regular checks, but they have a difficulty in accessing a hospital. Some remote diagnosis systems are being used for them, but there are limitations in checking a patient's status regularly. In this paper, we present a remote medical assistant that can help pressure ulcer management with image processing techniques. The proposed system includes a mobile application with a deep learning model for wound segmentation and analysis. As there are not enough data to train the deep learning model, we make use of a pretrained model from a relevant domain and data augmentation that is appropriate for this task. First of all, an image preprocessing method using bilinear interpolation is used to resize images and normalize the images. Second, for data augmentation, we use rotation, reflection, and a watershed algorithm. Third, we use a pretrained deep learning model generated from skin wound images similar to pressure ulcer images. Finally, we added an attention module that can provide hints on the pressure ulcer image features. The resulting model provides an accuracy of 99.0%, an intersection over union (IoU) of 99.99%, and a dice similarity coefficient (DSC) of 93.4% for pressure ulcer segmentation, which is better than existing results.