Abstract:Federated Learning (FL) has the potential for simultaneous global learning amongst a large number of parallel agents, enabling emerging AI such as LLMs to be trained across demographically diverse data. Central to this being efficient is the ability for FL to perform sparse gradient updates and remote direct memory access at the central server. Most of the research in FL security focuses on protecting data privacy at the edge client or in the communication channels between the client and server. Client-facing attacks on the server are less well investigated as the assumption is that a large collective of clients offer resilience. Here, we show that by attacking certain clients that lead to a high frequency repetitive memory update in the server, we can remote initiate a rowhammer attack on the server memory. For the first time, we do not need backdoor access to the server, and a reinforcement learning (RL) attacker can learn how to maximize server repetitive memory updates by manipulating the client's sensor observation. The consequence of the remote rowhammer attack is that we are able to achieve bit flips, which can corrupt the server memory. We demonstrate the feasibility of our attack using a large-scale FL automatic speech recognition (ASR) systems with sparse updates, our adversarial attacking agent can achieve around 70\% repeated update rate (RUR) in the targeted server model, effectively inducing bit flips on server DRAM. The security implications are that can cause disruptions to learning or may inadvertently cause elevated privilege. This paves the way for further research on practical mitigation strategies in FL and hardware design.
Abstract:Mixed-precision computing, a widely applied technique in AI, offers a larger trade-off space between accuracy and efficiency. The recent purposed Mixed-Precision Over-the-Air Federated Learning (MP-OTA-FL) enables clients to operate at appropriate precision levels based on their heterogeneous hardware, taking advantages of the larger trade-off space while covering the quantization overheads in the mixed-precision modulation scheme for the OTA aggregation process. A key to further exploring the potential of the MP-OTA-FL framework is the optimization of client precision levels. The choice of precision level hinges on multifaceted factors including hardware capability, potential client contribution, and user satisfaction, among which factors can be difficult to define or quantify. In this paper, we propose a RAG-based User Profiling for precision planning framework that integrates retrieval-augmented LLMs and dynamic client profiling to optimize satisfaction and contributions. This includes a hybrid interface for gathering device/user insights and an RAG database storing historical quantization decisions with feedback. Experiments show that our method boosts satisfaction, energy savings, and global model accuracy in MP-OTA-FL systems.
Abstract:Over-the-Air Federated Learning (OTA-FL) has been extensively investigated as a privacy-preserving distributed learning mechanism. Realistic systems will see FL clients with diverse size, weight, and power configurations. A critical research gap in existing OTA-FL research is the assumption of homogeneous client computational bit precision. Indeed, many clients may exploit approximate computing (AxC) where bit precisions are adjusted for energy and computational efficiency. The dynamic distribution of bit precision updates amongst FL clients poses an open challenge for OTA-FL, as is is incompatible in the wireless modulation superposition space. Here, we propose an AxC-based OTA-FL framework of clients with multiple precisions, demonstrating the following innovations: (i) optimize the quantization-performance trade-off for both server and clients within the constraints of varying edge computing capabilities and learning accuracy requirements, and (ii) develop heterogeneous gradient resolution OTA-FL modulation schemes to ensure compatibility with physical layer OTA aggregation. Our findings indicate that we can design modulation schemes that enable AxC based OTA-FL, which can achieve 50\% faster and smoother server convergence and a performance enhancement for the lowest precision clients compared to a homogeneous precision approach. This demonstrates the great potential of our AxC-based OTA-FL approach in heterogeneous edge computing environments.