Abstract:Current structural pruning methods face two significant limitations: (i) they often limit pruning to finer-grained levels like channels, making aggressive parameter reduction challenging, and (ii) they focus heavily on parameter and FLOP reduction, with existing latency-aware methods frequently relying on simplistic, suboptimal linear models that fail to generalize well to transformers, where multiple interacting dimensions impact latency. In this paper, we address both limitations by introducing Multi-Dimensional Pruning (MDP), a novel paradigm that jointly optimizes across a variety of pruning granularities-including channels, query, key, heads, embeddings, and blocks. MDP employs an advanced latency modeling technique to accurately capture latency variations across all prunable dimensions, achieving an optimal balance between latency and accuracy. By reformulating pruning as a Mixed-Integer Nonlinear Program (MINLP), MDP efficiently identifies the optimal pruned structure across all prunable dimensions while respecting latency constraints. This versatile framework supports both CNNs and transformers. Extensive experiments demonstrate that MDP significantly outperforms previous methods, especially at high pruning ratios. On ImageNet, MDP achieves a 28% speed increase with a +1.4 Top-1 accuracy improvement over prior work like HALP for ResNet50 pruning. Against the latest transformer pruning method, Isomorphic, MDP delivers an additional 37% acceleration with a +0.7 Top-1 accuracy improvement.
Abstract:As we push the boundaries of performance in various vision tasks, the models grow in size correspondingly. To keep up with this growth, we need very aggressive pruning techniques for efficient inference and deployment on edge devices. Existing pruning approaches are limited to channel pruning and struggle with aggressive parameter reductions. In this paper, we propose a novel multi-dimensional pruning framework that jointly optimizes pruning across channels, layers, and blocks while adhering to latency constraints. We develop a latency modeling technique that accurately captures model-wide latency variations during pruning, which is crucial for achieving an optimal latency-accuracy trade-offs at high pruning ratio. We reformulate pruning as a Mixed-Integer Nonlinear Program (MINLP) to efficiently determine the optimal pruned structure with only a single pass. Our extensive results demonstrate substantial improvements over previous methods, particularly at large pruning ratios. In classification, our method significantly outperforms prior art HALP with a Top-1 accuracy of 70.0(v.s. 68.6) and an FPS of 5262 im/s(v.s. 4101 im/s). In 3D object detection, we establish a new state-of-the-art by pruning StreamPETR at a 45% pruning ratio, achieving higher FPS (37.3 vs. 31.7) and mAP (0.451 vs. 0.449) than the dense baseline.