Abstract:Cloud-device collaborative recommendation partitions computation across the cloud and user devices: the cloud provides semantic user modeling, while the device leverages recent interactions and cloud semantic signals for privacy-preserving, responsive reranking. With large language models (LLMs) on the cloud, semantic user representations can improve sequential recommendation by capturing high-level intent. However, regenerating such representations via cloud LLM inference for every request is often infeasible at real-world scale. As a result, on-device reranking commonly reuses a cached cloud semantic user embedding across requests. We empirically identify a cloud semantic staleness effect: reused embeddings become less aligned with the user's latest interactions, leading to measurable ranking degradation. Most existing LLM-enabled cloud-device recommenders are typically designed around on-demand cloud semantics, either by assuming low-latency cloud LLM access or by regenerating semantic embeddings per request. When per-request regeneration is infeasible and cached semantics must be reused, two technical challenges arise: (1) deciding when cached cloud semantics remain useful for on-device reranking, and (2) maintaining ranking quality when the cloud LLM cannot be invoked and only cached semantics are available. To address this gap, we introduce the Semantic Calibration for LLM-enabled Cloud-Device Recommendation (SCaLRec). First, it estimates the reliability of cached semantics under the user's latest interactions. Second, an on-device semantic calibration module is proposed to adjusts the cached semantic embedding on-device using up-to-date interaction evidence, without per-request cloud LLM involvement. Experiments on real-world datasets show that SCaLRec consistently improves recommendation performance over strong baselines under cloud semantic staleness.
Abstract:Effective and efficient graph representation learning is essential for enabling critical downstream tasks, such as node classification, link prediction, and subgraph search. However, existing graph neural network (GNN) architectures often struggle to adapt to diverse and complex graph structures, limiting their ability to provide robust and generalizable representations. To address this challenge, we propose ABG-NAS, a novel framework for automated graph neural network architecture search tailored for efficient graph representation learning. ABG-NAS encompasses three key components: a Comprehensive Architecture Search Space (CASS), an Adaptive Genetic Optimization Strategy (AGOS), and a Bayesian-Guided Tuning Module (BGTM). CASS systematically explores diverse propagation (P) and transformation (T) operations, enabling the discovery of GNN architectures capable of capturing intricate graph characteristics. AGOS dynamically balances exploration and exploitation, ensuring search efficiency and preserving solution diversity. BGTM further optimizes hyperparameters periodically, enhancing the scalability and robustness of the resulting architectures. Empirical evaluations on benchmark datasets (Cora, PubMed, Citeseer, and CoraFull) demonstrate that ABG-NAS consistently outperforms both manually designed GNNs and state-of-the-art neural architecture search (NAS) methods. These results highlight the potential of ABG-NAS to advance graph representation learning by providing scalable and adaptive solutions for diverse graph structures. Our code is publicly available at https://github.com/sserranw/ABG-NAS.