Abstract:Workshop version accepted at KDD 2025 (AI4SupplyChain). Connecting an ever-expanding catalogue of products with suitable manufacturers and suppliers is critical for resilient, efficient global supply chains, yet traditional methods struggle to capture complex capabilities, certifications, geographic constraints, and rich multimodal data of real-world manufacturer profiles. To address these gaps, we introduce PMGraph, a public benchmark of bipartite and heterogeneous multimodal supply-chain graphs linking 8,888 manufacturers, over 70k products, more than 110k manufacturer-product edges, and over 29k product images. Building on this benchmark, we propose the Cascade Multimodal Attributed Graph C-MAG, a two-stage architecture that first aligns and aggregates textual and visual attributes into intermediate group embeddings, then propagates them through a manufacturer-product hetero-graph via multiscale message passing to enhance link prediction accuracy. C-MAG also provides practical guidelines for modality-aware fusion, preserving predictive performance in noisy, real-world settings.
Abstract:Face recognition systems have been shown to be vulnerable to adversarial examples resulting from adding small perturbations to probe images. Such adversarial images can lead state-of-the-art face recognition systems to falsely reject a genuine subject (obfuscation attack) or falsely match to an impostor (impersonation attack). Current approaches to crafting adversarial face images lack perceptual quality and take an unreasonable amount of time to generate them. We propose, AdvFaces, an automated adversarial face synthesis method that learns to generate minimal perturbations in the salient facial regions via Generative Adversarial Networks. Once AdvFaces is trained, it can automatically generate imperceptible perturbations that can evade state-of-the-art face matchers with attack success rates as high as 97.22% and 24.30% for obfuscation and impersonation attacks, respectively.