Abstract:Online, people often recount their experiences turning to conversational AI agents (e.g., ChatGPT, Claude, Copilot) for mental health support -- going so far as to replace their therapists. These anecdotes suggest that AI agents have great potential to offer accessible mental health support. However, it's unclear how to meet this potential in extreme mental health crisis use cases. In this work, we explore the first-person experience of turning to a conversational AI agent in a mental health crisis. From a testimonial survey (n = 53) of lived experiences, we find that people use AI agents to fill the in-between spaces of human support; they turn to AI due to lack of access to mental health professionals or fears of burdening others. At the same time, our interviews with mental health experts (n = 16) suggest that human-human connection is an essential positive action when managing a mental health crisis. Using the stages of change model, our results suggest that a responsible AI crisis intervention is one that increases the user's preparedness to take a positive action while de-escalating any intended negative action. We discuss the implications of designing conversational AI agents as bridges towards human-human connection rather than ends in themselves.
Abstract:Red-teaming is a core part of the infrastructure that ensures that AI models do not produce harmful content. Unlike past technologies, the black box nature of generative AI systems necessitates a uniquely interactional mode of testing, one in which individuals on red teams actively interact with the system, leveraging natural language to simulate malicious actors and solicit harmful outputs. This interactional labor done by red teams can result in mental health harms that are uniquely tied to the adversarial engagement strategies necessary to effectively red team. The importance of ensuring that generative AI models do not propagate societal or individual harm is widely recognized -- one less visible foundation of end-to-end AI safety is also the protection of the mental health and wellbeing of those who work to keep model outputs safe. In this paper, we argue that the unmet mental health needs of AI red-teamers is a critical workplace safety concern. Through analyzing the unique mental health impacts associated with the labor done by red teams, we propose potential individual and organizational strategies that could be used to meet these needs, and safeguard the mental health of red-teamers. We develop our proposed strategies through drawing parallels between common red-teaming practices and interactional labor common to other professions (including actors, mental health professionals, conflict photographers, and content moderators), describing how individuals and organizations within these professional spaces safeguard their mental health given similar psychological demands. Drawing on these protective practices, we describe how safeguards could be adapted for the distinct mental health challenges experienced by red teaming organizations as they mitigate emerging technological risks on the new digital frontlines.