Abstract:The increasing need for data privacy and the demand for robust machine learning models have fueled the development of synthetic data generation techniques. However, current methods often succeed in replicating simple summary statistics but fail to preserve both the pairwise and higher-order correlation structure of the data that define the complex, multi-variable interactions inherent in real-world systems. This limitation can lead to synthetic data that is superficially realistic but fails when used for sophisticated modeling tasks. In this white paper, we introduce Generative Correlation Manifolds (GCM), a computationally efficient method for generating synthetic data. The technique uses Cholesky decomposition of a target correlation matrix to produce datasets that, by mathematical proof, preserve the entire correlation structure -- from simple pairwise relationships to higher-order interactions -- of the source dataset. We argue that this method provides a new approach to synthetic data generation with potential applications in privacy-preserving data sharing, robust model training, and simulation.
Abstract:Distance measures have been recognized as one of the fundamental building blocks in time-series analysis tasks, e.g., querying, indexing, classification, clustering, anomaly detection, and similarity search. The vast proliferation of time-series data across a wide range of fields has increased the relevance of evaluating the effectiveness and efficiency of these distance measures. To provide a comprehensive view of this field, this work considers over 100 state-of-the-art distance measures, classified into 7 categories: lock-step measures, sliding measures, elastic measures, kernel measures, feature-based measures, model-based measures, and embedding measures. Beyond providing comprehensive mathematical frameworks, this work also delves into the distinctions and applications across these categories for both univariate and multivariate cases. By providing comprehensive collections and insights, this study paves the way for the future development of innovative time-series distance measures.