Abstract:Identifying mistakes (i.e., miscues) made while reading aloud is commonly approached post-hoc by comparing automatic speech recognition (ASR) transcriptions to the target reading text. However, post-hoc methods perform poorly when ASR inaccurately transcribes verbatim speech. To improve on current methods for reading error annotation, we propose a novel end-to-end architecture that incorporates the target reading text via prompting and is trained for both improved verbatim transcription and direct miscue detection. Our contributions include: first, demonstrating that incorporating reading text through prompting benefits verbatim transcription performance over fine-tuning, and second, showing that it is feasible to augment speech recognition tasks for end-to-end miscue detection. We conducted two case studies -- children's read-aloud and adult atypical speech -- and found that our proposed strategies improve verbatim transcription and miscue detection compared to current state-of-the-art.
Abstract:Existing novice-friendly machine learning (ML) modeling tools center around a solo user experience, where a single user collects only their own data to build a model. However, solo modeling experiences limit valuable opportunities for encountering alternative ideas and approaches that can arise when learners work together; consequently, it often precludes encountering critical issues in ML around data representation and diversity that can surface when different perspectives are manifested in a group-constructed data set. To address this issue, we created Co-ML -- a tablet-based app for learners to collaboratively build ML image classifiers through an end-to-end, iterative model-building process. In this paper, we illustrate the feasibility and potential richness of collaborative modeling by presenting an in-depth case study of a family (two children 11 and 14-years-old working with their parents) using Co-ML in a facilitated introductory ML activity at home. We share the Co-ML system design and contribute a discussion of how using Co-ML in a collaborative activity enabled beginners to collectively engage with dataset design considerations underrepresented in prior work such as data diversity, class imbalance, and data quality. We discuss how a distributed collaborative process, in which individuals can take on different model-building responsibilities, provides a rich context for children and adults to learn ML dataset design.