Abstract:Understanding and modeling buyer intent is a foundational challenge in optimizing search query reformulation within the dynamic landscape of e-commerce search systems. This work introduces a robust data pipeline designed to mine and analyze large-scale buyer query logs, with a focus on extracting fine-grained intent signals from both explicit interactions and implicit behavioral cues. Leveraging advanced sequence mining techniques and supervised learning models, the pipeline systematically captures patterns indicative of latent purchase intent, enabling the construction of a high-fidelity, intent-rich dataset. The proposed framework facilitates the development of adaptive query rewrite strategies by grounding reformulations in inferred user intent rather than surface-level lexical signals. This alignment between query rewriting and underlying user objectives enhances both retrieval relevance and downstream engagement metrics. Empirical evaluations across multiple product verticals demonstrate measurable gains in precision-oriented relevance metrics, underscoring the efficacy of intent-aware reformulation. Our findings highlight the value of intent-centric modeling in bridging the gap between sparse user inputs and complex product discovery goals, and establish a scalable foundation for future research in user-aligned neural retrieval and ranking systems.
Abstract:Recent work has connected adversarial attack methods and algorithmic recourse methods: both seek minimal changes to an input instance which alter a model's classification decision. It has been shown that traditional adversarial training, which seeks to minimize a classifier's susceptibility to malicious perturbations, increases the cost of generated recourse; with larger adversarial training radii correlating with higher recourse costs. From the perspective of algorithmic recourse, however, the appropriate adversarial training radius has always been unknown. Another recent line of work has motivated adversarial training with adaptive training radii to address the issue of instance-wise variable adversarial vulnerability, showing success in domains with unknown attack radii. This work studies the effects of adaptive adversarial training on algorithmic recourse costs. We establish that the improvements in model robustness induced by adaptive adversarial training show little effect on algorithmic recourse costs, providing a potential avenue for affordable robustness in domains where recoursability is critical.
Abstract:Machine Learning's proliferation in critical fields such as healthcare, banking, and criminal justice has motivated the creation of tools which ensure trust and transparency in ML models. One such tool is Actionable Recourse (AR) for negatively impacted users. AR describes recommendations of cost-efficient changes to a user's actionable features to help them obtain favorable outcomes. Existing approaches for providing recourse optimize for properties such as proximity, sparsity, validity, and distance-based costs. However, an often-overlooked but crucial requirement for actionability is a consideration of User Preference to guide the recourse generation process. In this work, we attempt to capture user preferences via soft constraints in three simple forms: i) scoring continuous features, ii) bounding feature values and iii) ranking categorical features. Finally, we propose a gradient-based approach to identify User Preferred Actionable Recourse (UP-AR). We carried out extensive experiments to verify the effectiveness of our approach.