Abstract:The practice of speculative decoding, whereby inference is probabilistically supported by a smaller, cheaper, ``drafter'' model, has become a standard technique for systematically reducing the decoding time of large language models. This paper conducts an analysis of speculative decoding through the lens of its potential disparate speed-up rates across tasks. Crucially, the paper shows that speed-up gained from speculative decoding is not uniformly distributed across tasks, consistently diminishing for under-fit, and often underrepresented tasks. To better understand this phenomenon, we derive an analysis to quantify this observed ``unfairness'' and draw attention to the factors that motivate such disparate speed-ups to emerge. Further, guided by these insights, the paper proposes a mitigation strategy designed to reduce speed-up disparities and validates the approach across several model pairs, revealing on average a 12% improvement in our fairness metric.




Abstract:Large Language Model agents have begun to appear as personal assistants, customer service bots, and clinical aides. While these applications deliver substantial operational benefits, they also require continuous access to sensitive data, which increases the likelihood of unauthorized disclosures. This study proposes an auditing framework for conversational privacy that quantifies and audits these risks. The proposed Conversational Manipulation for Privacy Leakage (CMPL) framework, is an iterative probing strategy designed to stress-test agents that enforce strict privacy directives. Rather than focusing solely on a single disclosure event, CMPL simulates realistic multi-turn interactions to systematically uncover latent vulnerabilities. Our evaluation on diverse domains, data modalities, and safety configurations demonstrate the auditing framework's ability to reveal privacy risks that are not deterred by existing single-turn defenses. In addition to introducing CMPL as a diagnostic tool, the paper delivers (1) an auditing procedure grounded in quantifiable risk metrics and (2) an open benchmark for evaluation of conversational privacy across agent implementations.