Abstract:Many learning paradigms self-select training data in light of previously learned parameters. Examples include active learning, semi-supervised learning, bandits, or boosting. Rodemann et al. (2024) unify them under the framework of "reciprocal learning". In this article, we address the question of how well these methods can generalize from their self-selected samples. In particular, we prove universal generalization bounds for reciprocal learning using covering numbers and Wasserstein ambiguity sets. Our results require no assumptions on the distribution of self-selected data, only verifiable conditions on the algorithms. We prove results for both convergent and finite iteration solutions. The latter are anytime valid, thereby giving rise to stopping rules for a practitioner seeking to guarantee the out-of-sample performance of their reciprocal learning algorithm. Finally, we illustrate our bounds and stopping rules for reciprocal learning's special case of semi-supervised learning.
Abstract:Accurate Land Use and Land Cover (LULC) maps are essential for understanding the drivers of sustainable development, in terms of its complex interrelationships between human activities and natural resources. However, existing LULC maps often lack precise urban and rural classifications, particularly in diverse regions like Africa. This study presents a novel construction of a high-resolution rural-urban map using deep learning techniques and satellite imagery. We developed a deep learning model based on the DeepLabV3 architecture, which was trained on satellite imagery from Landsat-8 and the ESRI LULC dataset, augmented with human settlement data from the GHS-SMOD. The model utilizes semantic segmentation to classify land into detailed categories, including urban and rural areas, at a 10-meter resolution. Our findings demonstrate that incorporating LULC along with urban and rural classifications significantly enhances the model's ability to accurately distinguish between urban, rural, and non-human settlement areas. Therefore, our maps can support more informed decision-making for policymakers, researchers, and stakeholders. We release a continent wide urban-rural map, covering the period 2016 and 2022.